Schizophrenia is a highly disabling mental disorder, in which genetics and environmental factors interact culminating in the disease. The treatment of negative symptoms and cognitive deficits with antipsychotics is currently inefficient and is an important field of research. Environmental enrichment (EE) has been suggested to improve some cognitive deficits in animal models of various psychiatric disorders. In this study, we aimed to evaluate a possible beneficial effect of early and long-term exposure to EE on an animal model of schizophrenia, the SHR strain. Young male Wistar rats (control strain) and SHRs (21 post-natal days) were housed for 6weeks in two different conditions: in large cages (10 animals per cage) containing objects of different textures, forms, colors and materials that were changed 3 times/week (EE condition) or in standard cages (5 animals per cage - Control condition). Behavioral evaluations - social interaction (SI), locomotion, prepulse inhibition of startle (PPI) and spontaneous alternation (SA) - were performed 6weeks after the end of EE. SHRs presented deficits in PPI (a sensorimotor impairment), SI (mimicking the negative symptoms) and SA (a working memory deficit), and also hyperlocomotion (modeling the positive symptoms). EE was able to reduce locomotion and increase PPI in both strains, and to prevent the working memory deficit in SHRs. EE also increased the number of neurons in the CA1 and CA3 of the hippocampus. In conclusion, EE can be a potential nonpharmacological strategy to prevent some behavioral deficits associated with schizophrenia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.schres.2016.06.006 | DOI Listing |
Environ Sci Process Impacts
January 2025
Environmental Chemistry Section, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway.
Alum shale formations in Scandinavia are generally enriched in uranium (U) and, when exposed to air and water, may produce acidic rock drainage (ARD), releasing potentially harmful elements into the environment. Taraldrud is a legacy site in southeast Norway where approx. 51 000 m of alum shale was deposited in the 1980s-1990s.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, United States.
Field pennycress () is a new biofuel winter annual crop with extreme cold hardiness and a short life cycle, enabling off-season integration into corn and soybean rotations across the U.S. Midwest.
View Article and Find Full Text PDFFront Microbiol
December 2024
Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India.
Introduction: The development of the human gut microbiota is shaped by factors like delivery mode, infant feeding practices, maternal diet, and environmental conditions. Diet plays a pivotal role in determining the diversity and composition of the gut microbiome, which in turn impacts immune development and overall health during this critical period. The early years, which are vital for microbial shaping, highlight a gap in understanding how the shift from milk-based diets to solid foods influences gut microbiota development in infants and young children, particularly in Yaoundé, Cameroon.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, P.R. China.
Ferroptosis and sonodynamic therapy (SDT) are both promising therapeutic modalities, but their clinical application remains challenging due to the hypoxic tumor microenvironment and limited supply of polyunsaturated fatty acids. Developing an agent with oxygen-enhanced SDT and increased ferroptosis sensitivity is crucial for advancing tumor therapy. In this study, catalase (Cat) and Acyl-CoA synthetase long-chain family member 4 (ACSL4) highly expressed 4T1 cells were constructed lentivirus transfection.
View Article and Find Full Text PDFThe aquifer in the subseafloor igneous basement is a massive, continuous microbial substrate, yet sparingly little is known about life in this habitat. The work to date has focused largely on describing microbial diversity in the young basement (<10 Ma), where the basaltic crust is still porous and fluid flow through it is active. Here, we test the hypothesis that microbial life exists in subseafloor basement >65 Ma using samples collected from the Louisville Seamount Chain via seafloor drilling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!