Background: Respiratory dysfunction is a frequent complication after severe burn injury. Respiratory muscle atrophy may induce respiratory dysfunction due to insufficient inspiratory motive power. Accumulated evidence suggests that apoptosis is very important in skeletal muscle atrophy in multiple pathologic conditions. Therefore, we hypothesize that myonuclear apoptosis contributes to diaphragm atrophy induced by burn injury, and death receptor signaling activation plays a role in this process.

Methods: Wistar rats in the burn-injured group were subjected to a full-thickness scald injury around 40% of total body surface area. Diaphragm samples were examined for myonuclear apoptosis by transmission electron microscope, terminal deoxynucleotidyl transferase-mediated nick end labeling assay, and immunohistochemistry for caspase-3. Serum level of apoptotic ligands were assessed by ELISA. Activation of death receptor signaling was examined by Western blotting.

Results: Burn injury resulted in significant reductions of diaphragm muscle mass and myofiber cross-section area. Apoptosis in diaphragm appeared from day 1 and peaked on day 4 after injury. The level of soluble TNF-related apoptosis-inducing ligand and the ratio of Fas ligand to soluble Fas in serum significantly increased after burn injury. In diaphragm of burnt animals, the expressions of proapoptotic proteins, such as cleaved caspase-8, cleaved caspase-3, and Bax-to-Bcl-2 ratio were upregulated, whereas expression of pAkt, an antiapoptotic protein, was downregulated. Immunohistochemistry revealed that the most of the caspase-3 was expressed in myofiber nuclei and their surrounding cytoplasm area in tissue sections.

Conclusions: Severe burn injury induces myonuclear apoptosis in diaphragm, which could be a contributor to diaphragm muscle atrophy. Activation of death receptor signaling may be a mechanism of apoptosis in diaphragm.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jss.2016.01.035DOI Listing

Publication Analysis

Top Keywords

burn injury
20
death receptor
16
receptor signaling
16
muscle atrophy
12
myonuclear apoptosis
12
apoptosis diaphragm
12
diaphragm
9
diaphragm burnt
8
respiratory dysfunction
8
severe burn
8

Similar Publications

Outcomes of electrical injuries in the emergency department: epidemiology, severity predictors, and chronic sequelae.

Eur J Trauma Emerg Surg

January 2025

Emergency Department, Habib bourguiba university hospital, Faculty of Medicine, Sfax University, Majida Boulila Avenue, Sfax, Tunisia.

Introduction: Electrical injuries (EIs) represent a significant clinical challenge due to their complex pathophysiology and variable presentation, ranging from minor burns to severe internal organ damage. Despite their prevalence in both; domestic and occupational settings, there remains a rareness of systematic guidelines and comprehensive literature to aid clinicians in effectively managing these injuries. Understanding these factors is crucial for developing protocols that can mitigate the risk of delayed complications, such as cardiac arrhythmias, in patients who initially appear stable.

View Article and Find Full Text PDF

[Not Available].

Surg Technol Int

January 2025

Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, New York.

Thermal or burn injuries cause coagulative necrosis of the epidermis and underlying tissues and the resultant wounds can be long lasting and highly painful. Depending on the depth of a burn, management ranges from local wound care to surgical intervention. When presented with deep-partial thickness and full-thickness burns, autologous skin grafting has been the mainstay of management to prevent scarring and promote healing.

View Article and Find Full Text PDF

Endogenous retroviral (ERV) RNA is highly expressed in cancer, although the molecular causes and consequences remain unknown. We found that ZC3H18 (Z18), a component of multiple nuclear RNA surveillance complexes, has recurrent truncating mutations in cancer. We show that Z18 mutations are oncogenic and that Z18 plays an evolutionarily conserved role in nuclear RNA surveillance of ERV RNA.

View Article and Find Full Text PDF

Objective: Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder that significantly impairs muscle regeneration following injuries, contributing to numerous complications and reduced quality of life. There is an urgent need for therapeutic strategies that can enhance muscle regeneration and alleviate these pathological mechanisms. In this study, we evaluate the therapeutic efficacy of W-GA nanodots, which are composed of gallic acid (GA) and tungstate (W6+), on muscle regeneration in type 2 diabetes mellitus (T2D)-induced muscle injury, with a focus on their anti-inflammatory and antioxidative effects.

View Article and Find Full Text PDF

BSP promotes skin wound healing by regulating the expression level of SCEL.

Cytotechnology

April 2025

Medical Aesthetics Teaching and Research Office, Rehabilitation and Health Department, Anhui College of Traditional Chinese Medicine, No.18 Wuxia mountain West Road, Wuhu, 241002 Anhui China.

Burn injuries are complex, life-threatening events involving intricate cellular and molecular processes, including angiogenesis, which is vital for effective wound healing. polysaccharide (BSP), a bioactive compound from , exhibits anti-inflammatory and wound-healing properties. However, its impact on angiogenesis modulation, particularly through the synaptopodin-2-like (SCEL) gene, remains poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!