Use of VacA as a Vaccine Antigen.

Toxins (Basel)

Service of Gastroenterology and Hepatology, Department of Medicine, Lausanne University Hospital, CLE D203, CHUV, 155 Chemin des Boveresses, CH-1066 Epalinges, Switzerland.

Published: June 2016

One of the major toxins secreted by H. pylori is the Vacuolating cytotoxin A (VacA) named after its ability to induce the formation of "vacuole"-like membrane vesicles in the cytoplasm of gastric cells. VacA has been associated with the disruption of mitochondrial functions, stimulation of apoptosis, blockade of T cell proliferation and promotion of regulatory T cells, thereby making it a promising vaccine target. Immunity to bacterial virulence factors is well known to protect humans against bacterial infections; hence, detoxified VacA has been evaluated as a vaccine antigen. Our short review summarizes the pre-clinical and clinical data that have been published on the use of VacA in the development of the H. pylori vaccine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4926147PMC
http://dx.doi.org/10.3390/toxins8060181DOI Listing

Publication Analysis

Top Keywords

vaccine antigen
8
vaca
5
vaca vaccine
4
antigen major
4
major toxins
4
toxins secreted
4
secreted pylori
4
pylori vacuolating
4
vacuolating cytotoxin
4
cytotoxin vaca
4

Similar Publications

Unlabelled: Current influenza vaccination approaches protect against specific viral strains, but do not consistently induce broad and long-lasting protection to the diversity of circulating influenza viruses. Single-cycle viruses delivered to the respiratory tract may offer a promising solution as they safely express a diverse array of viral antigens by undergoing just one round of cell infection in their host and stimulate broadly protective resident memory T-cell responses in the lung. We have previously developed a vaccine candidate called S-FLU, which is limited to a single cycle of infection by inactivation of the hemagglutinin signal sequence and induces a broadly cross-reactive T-cell response and antibodies to neuraminidase, but fails to induce neutralizing antibodies to hemagglutinin after intranasal administration.

View Article and Find Full Text PDF

Peptide vaccines based on tumor antigens face the challenges of rapid clearance of peptides, low immunogenicity, and immune suppressive tumor microenvironment. However, the traditional solution mainly uses exogenous substances as adjuvants or carriers to enhance innate immune responses, but excessive inflammation can damage adaptive immunity. In the current study, we propose a straightforward novel nanovaccine strategy by employing homologous human ferritin light chain for minimized innate immunity and dendritic cell (DC) targeting, the cationic KALA peptide for enhanced cellular uptake, and suppressor of cytokine signaling 1 (SOCS1) siRNA for modulating DC activity.

View Article and Find Full Text PDF

A subunit vaccine Ag85A-LpqH focusing on humoral immunity provides substantial protection against tuberculosis in mice.

iScience

January 2025

National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.

The importance of humoral immunity in combating TB has gained extensive recognition. In this study, a subunit vaccine named Ag85A-LpqH (AL) was prepared by fusing the antigen Ag85A proved to induce robust T cell immune responses, and LpqH was shown to produce protective antibodies. The prevention and BCG prime-boost mouse models were established to test the vaccine efficacy.

View Article and Find Full Text PDF

Preparation and application of a multiepitope fusion protein based on bioinformatics and Tandem Mass Tag-based proteomics technology.

Front Immunol

January 2025

Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, China.

Introduction: Brucellosis is a widespread zoonotic disease that poses a considerable challenge to global public health. Existing diagnostic methods for this condition, such as serological assays and bacterial culture, encounter difficulties due to their limited specificity and high operational complexity. Therefore, there is an urgent need for the development of enhanced diagnostic approaches for brucellosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!