The possibility of distinguishing different soil moisture levels by electronic nose (e-nose) was studied. Ten arable soils of various types were investigated. The measurements were performed for air-dry (AD) soils stored for one year, then moistened to field water capacity and finally dried within a period of 180 days. The volatile fingerprints changed during the course of drying. At the end of the drying cycle, the fingerprints were similar to those of the initial AD soils. Principal component analysis (PCA) and artificial neural network (ANN) analysis showed that e-nose results can be used to distinguish soil moisture. It was also shown that different soils can give different e-nose signals at the same moistures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4934312PMC
http://dx.doi.org/10.3390/s16060886DOI Listing

Publication Analysis

Top Keywords

soil moisture
12
evaluating soil
4
moisture status
4
e-nose
4
status e-nose
4
e-nose possibility
4
possibility distinguishing
4
distinguishing soil
4
moisture levels
4
levels electronic
4

Similar Publications

A two-year study has been conducted to optimize saffron cormlet production in a soilless cultivation system. Variations in the concentration of phosphate, boron, and irrigation events were assessed in the first year. Subsequently, after optimizing the substrate composition, the effects of nutrient solution volume and the concentration of nitrate, iron, and boron were investigated on the yield and weight of cormlets and leaves, photosynthetic activities, and productivity of nutrient solutions in the second year.

View Article and Find Full Text PDF

The increasing environmental issues and growing interest in utilizing natural resources have led to heightened attention towards renewable energy sources. This has spurred the exploration of sustainable approaches, including ecosystem restoration. The soil's ability to retain moisture increases with the rise in organic carbon content.

View Article and Find Full Text PDF

Permafrost is a potentially important source of deglacial carbon release alongside deep-sea carbon outgassing. However, limited proxies have restricted our understanding in circumarctic regions and the last deglaciation. Tibetan Plateau (TP), the Earth's largest low-latitude and alpine permafrost region, remains underexplored.

View Article and Find Full Text PDF

Ephemeral streams are important pollutant conduits, but the mechanisms that control nutrient transport to these systems remain unclear. In the US Virgin Islands (USVI), where most streams flow ephemerally, a lack of continuous hydrologic and water quality data limits our understanding of streamflow behavior and its influence on water quality. We therefore assessed the impact of soil moisture and hydrometeorological conditions on nitrogen (N) concentrations within an ephemeral stream on St.

View Article and Find Full Text PDF

Water level fluctuation regulated the effect of bacterial community on ecosystem multifunctionality in Poyang Lake wetland.

J Environ Manage

January 2025

Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; College of Nanjing, University of Chinese Academy of Sciences, Nanjing, 211135, China. Electronic address:

Soil bacterial communities are critical for maintaining ecosystem functions, yet the impact of water level fluctuations on ecosystem multifunctionality (EMF) and the role of bacterial communities in the lake water-level-fluctuating zone (WLFZ) remain poorly understood. This study investigated how seasonal water level fluctuations influence EMF and their relationships with soil bacterial communities through a two-year field survey. We found that soil bacterial diversity was significantly positively correlated with EMF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!