Objective: We conducted a systematic, qualitative review of risk prediction models designed and tested for depression, bipolar disorder, generalized anxiety disorder, posttraumatic stress disorder, and psychotic disorders. Our aim was to understand the current state of research on risk prediction models for these 5 disorders and thus future directions as our field moves toward embracing prediction and prevention.
Data Sources: Systematic searches of the entire MEDLINE electronic database were conducted independently by 2 of the authors (from 1960 through 2013) in July 2014 using defined search criteria. Search terms included risk prediction, predictive model, or prediction model combined with depression, bipolar, manic depressive, generalized anxiety, posttraumatic, PTSD, schizophrenia, or psychosis.
Study Selection: We identified 268 articles based on the search terms and 3 criteria: published in English, provided empirical data (as opposed to review articles), and presented results pertaining to developing or validating a risk prediction model in which the outcome was the diagnosis of 1 of the 5 aforementioned mental illnesses. We selected 43 original research reports as a final set of articles to be qualitatively reviewed.
Data Extraction: The 2 independent reviewers abstracted 3 types of data (sample characteristics, variables included in the model, and reported model statistics) and reached consensus regarding any discrepant abstracted information.
Results: Twelve reports described models developed for prediction of major depressive disorder, 1 for bipolar disorder, 2 for generalized anxiety disorder, 4 for posttraumatic stress disorder, and 24 for psychotic disorders. Most studies reported on sensitivity, specificity, positive predictive value, negative predictive value, and area under the (receiver operating characteristic) curve.
Conclusions: Recent studies demonstrate the feasibility of developing risk prediction models for psychiatric disorders (especially psychotic disorders). The field must now advance by (1) conducting more large-scale, longitudinal studies pertaining to depression, bipolar disorder, anxiety disorders, and other psychiatric illnesses; (2) replicating and carrying out external validations of proposed models; (3) further testing potential selective and indicated preventive interventions; and (4) evaluating effectiveness of such interventions in the context of risk stratification using risk prediction models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4088/JCP.15r10003 | DOI Listing |
Orthop Surg
January 2025
Department of Orthopedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China.
Objective: Knee osteoarthritis (KOA) is characterized by structural changes. Aging is a major risk factor for KOA. Therefore, the objective of this study was to examine the role of genes related to aging and circadian rhythms in KOA.
View Article and Find Full Text PDFCirc Genom Precis Med
January 2025
Department of Medicine, Division of Cardiology (M.P., N.J.P., N.P.S.), Duke University, Durham, NC.
Background: Established risk models may not be applicable to patients at higher cardiovascular risk with a measured Lp(a) (lipoprotein[a]) level, a causal risk factor for atherosclerotic cardiovascular disease.
Methods: This was a model development study. The data source was the Nashville Biosciences Lp(a) data set, which includes clinical data from the Vanderbilt University Health System.
BJU Int
January 2025
Department of Urology, University of Alabama, Birmingham, AL, USA.
Objectives: To identify associations between 24-h urine abnormalities and clinical risk factors for recurrent stone formers.
Patients And Methods: The Registry for Stones of the Kidney and Ureter was queried for all patients who underwent 24-h urine studies. Patients were categorised by the number of clinical risk factors for recurrent stone disease.
Eur Heart J Digit Health
January 2025
Division of Cardiovascular Medicine, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, SE-182 88 Stockholm, Sweden.
Aims: A simplified version of the history, electrocardiogram, age, risk factors, troponin (HEART) score, excluding troponin, has been proposed to rule-out major adverse cardiac events (MACEs). Computerized history taking (CHT) provides a systematic and automated method to obtain information necessary to calculate the HEAR score. We aimed to evaluate the efficacy and diagnostic accuracy of CHT in calculating the HEAR score for predicting MACE.
View Article and Find Full Text PDFEur Heart J Digit Health
January 2025
Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
Aims: Aortic stenosis (AS) is a common and progressive disease, which, if left untreated, results in increased morbidity and mortality. Monitoring and follow-up care can be challenging due to significant variability in disease progression. This study aimed to develop machine learning models to predict the risks of disease progression and mortality in patients with mild AS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!