Replacing a single atom accelerates the folding of a protein and increases its thermostability.

Org Biomol Chem

Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA. and Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.

Published: July 2016

The conformational attributes of proline can have a substantial effect on the folding of polypeptide chains into a native structure and on the stability of that structure. Replacing the 4S hydrogen of a proline residue with fluorine is known to elicit stereoelectronic effects that favor a cis peptide bond. Here, semisynthesis is used to replace a cis-proline residue in ribonuclease A with (2S,4S)-4-fluoroproline. This subtle substitution accelerates the folding of the polypeptide chain into its three-dimensional structure and increases the thermostability of that structure without compromising its catalytic activity. Thus, an appropriately situated fluorine can serve as a prosthetic atom in the context of a protein.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5070668PMC
http://dx.doi.org/10.1039/c6ob00980hDOI Listing

Publication Analysis

Top Keywords

accelerates folding
8
increases thermostability
8
folding polypeptide
8
replacing single
4
single atom
4
atom accelerates
4
folding protein
4
protein increases
4
thermostability conformational
4
conformational attributes
4

Similar Publications

Phenotypic age acceleration (PhenoAgeAccel) is a novel clinical aging indicator. This study was carried out to investigate the relationship between PhenoAgeAccel and the incidence of VTE, as well as to integrate PhenoAgeAccel with genetic susceptibility to improve risk stratification of VTE. The study included 394 041 individuals from the UK Biobank.

View Article and Find Full Text PDF

A widespread and ancient bacterial machinery assembles cytochrome OmcS nanowires essential for extracellular electron transfer.

Cell Chem Biol

January 2025

Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA. Electronic address:

Microbial extracellular electron transfer (EET) drives various globally important environmental phenomena and has biotechnology applications. Diverse prokaryotes have been proposed to perform EET via surface-displayed "nanowires" composed of multi-heme cytochromes. However, the mechanism that enables only a few cytochromes to polymerize into nanowires is unclear.

View Article and Find Full Text PDF

14-3-3θ phosphorylation exacerbates alpha-synuclein aggregation and toxicity.

Neurobiol Dis

January 2025

Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America. Electronic address:

Aggregation of alpha-synuclein (αsyn) plays an integral role in Parkinson's disease (PD) and Dementia with Lewy bodies (DLB). 14-3-3θ is a highly expressed brain protein with chaperone-like activity that regulates αsyn folding. 14-3-3θ overexpression reduces αsyn aggregation, transmission between cells, and neuronal loss, while 14-3-3 inhibition promotes αsyn pathology.

View Article and Find Full Text PDF

The pseudogap phenomena have been a long-standing mystery of the cuprate high-temperature superconductors. The pseudogap in the electron-doped cuprates has been attributed to band folding due to antiferromagnetic (AFM) long-range order or short-range correlation. We performed an angle-resolved photoemission spectroscopy study of the electron-doped cuprates PrLaCeCuO showing spin-glass, disordered AFM behaviors, and superconductivity at low temperatures and, by measurements with fine momentum cuts, found that the gap opens on the unfolded Fermi surface rather than the AFM Brillouin zone boundary.

View Article and Find Full Text PDF

We present a procedure for enhanced sampling of molecular dynamics simulations through informed stochastic resetting. Many phenomena, such as protein folding and crystal nucleation, occur over time scales inaccessible in standard simulations. We recently showed that stochastic resetting can accelerate molecular simulations that exhibit broad transition time distributions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!