The aim of this work is to predict the complexity perception of real world images. We propose a new complexity measure where different image features, based on spatial, frequency and color properties are linearly combined. In order to find the optimal set of weighting coefficients we have applied a Particle Swarm Optimization. The optimal linear combination is the one that best fits the subjective data obtained in an experiment where observers evaluate the complexity of real world scenes on a web-based interface. To test the proposed complexity measure we have performed a second experiment on a different database of real world scenes, where the linear combination previously obtained is correlated with the new subjective data. Our complexity measure outperforms not only each single visual feature but also two visual clutter measures frequently used in the literature to predict image complexity. To analyze the usefulness of our proposal, we have also considered two different sets of stimuli composed of real texture images. Tuning the parameters of our measure for this kind of stimuli, we have obtained a linear combination that still outperforms the single measures. In conclusion our measure, properly tuned, can predict complexity perception of different kind of images.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4919018 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0157986 | PLOS |
Pain Ther
January 2025
Department for Nervous Diseases, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991, Moscow, Russia.
Chronic non-specific low back pain (CNSLBP) is a debilitating condition that affects millions of people worldwide, significantly impacting quality of life and imposing a substantial socioeconomic burden. Traditional treatment approaches often rely on a one-size-fits-all strategy, failing to account for individual variations in pathophysiological mechanisms, drivers, and the principles of personalized medicine. Furthermore, an overemphasis on biomechanical findings from imaging may lead to ineffective interventions and unnecessary surgical procedures, obscuring other important factors that contribute to pain perception.
View Article and Find Full Text PDFeNeuro
January 2025
Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut 06030
The study of the neural circuitry underlying complex mammalian decision-making, particularly cognitive flexibility, is critical for understanding psychiatric disorders. To test cognitive flexibility, as well as potentially other decision-making paradigms involving multimodal sensory perception, we developed FlexRig, an open-source, modular behavioral platform for use in head-fixed mice. FlexRig enables the administration of tasks relying upon olfactory, somatosensory, and/or auditory cues and employing left and right licking as a behavior readout and reward delivery mechanism.
View Article and Find Full Text PDFBMJ Open
January 2025
Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
Objectives: To explore the lived experiences of patients with advanced pancreatic cancer enrolled in a patient-reported outcomes (PROs) management programme and to preliminarily understand how PROs management influences various aspects of patient care and overall quality of life.
Design: A qualitative phenomenological study.
Setting: A national cancer care centre in Southwest China specialised in cancer care, with a comprehensive PROs management programme.
Elife
January 2025
Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
The inferior colliculus (IC) has traditionally been regarded as an important relay in the auditory pathway, primarily involved in relaying auditory information from the brainstem to the thalamus. However, this study uncovers the multifaceted role of the IC in bridging auditory processing, sensory prediction, and reward prediction. Through extracellular recordings in monkeys engaged in a sound duration-based deviation detection task, we observed a 'climbing effect' in neuronal firing rates, indicative of an enhanced response over sound sequences linked to sensory prediction rather than reward anticipation.
View Article and Find Full Text PDFJMIR Serious Games
January 2025
School of Computing, Engineering and Mathematical Sciences, Optus Chair Digital Health, La Trobe University, Melbourne, Australia.
Background: This review explores virtual reality (VR) and exercise simulator-based interventions for individuals with attention-deficit/hyperactivity disorder (ADHD). Past research indicates that both VR and simulator-based interventions enhance cognitive functions, such as executive function and memory, though their impacts on attention vary.
Objective: This study aimed to contribute to the ongoing scientific discourse on integrating technology-driven interventions into the management and evaluation of ADHD.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!