Noncovalent interactions accompanying phenylalanine (Phe), tryptophan (Trp), and tyrosine (Tyr) amino acids based ionic liquids (AAILs) composed of 1-methyl-3-butyl-imidazole and its methyl-substituted derivative as cations have been analyzed employing the dispersion corrected density functional theory. It has been shown that cation-anion binding in these bioionic ILs is primarily facilitated through hydrogen bonding in addition to lp---π and CH---π interactions those arising from aromatic moieties which can be probed through (1)H and (13)C NMR spectra calculated from the gauge independent atomic orbital method. Characteristic NMR spin-spin coupling constants across hydrogen bonds of ion pair structures viz., Fermi contact, spin-orbit and spin-dipole terms show strong dependence on mutual orientation of cation with the amino acid anion. The spin-spin coupling mechanism transmits spin polarization via electric field effect originating from lp---π interactions whereas the electron delocalization from lone pair on the carbonyl oxygen to antibonding C-H orbital is facilitated by hydrogen bonding. It has been demonstrated that indirect spin-spin coupling constants across the hydrogen bonds correlate linearly with hydrogen bond distances. The binding energies and dissected nucleus independent chemical shifts (NICS) document mutual reduction of aromaticity of hydrogen bonded ion pairs consequent to localization of π-character. Moreover the nature and type of such noncovalent interactions governing the in-plane and out-of-plane NICS components provide a measure of diatropic and paratropic currents for the aromatic rings of varying size in AAILs. Besides the direction of frequency shifts of characteristic C═O and NH stretching vibrations in the calculated vibrational spectra has been rationalized.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.6b03985 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!