Oscillatory neuronal activity is implicated in many cognitive functions, and its phase coupling between sensors may reflect networks of communicating neuronal populations. Oscillatory activity is often studied using extracranial recordings and compared between experimental conditions. This is challenging, because there is overlap between sensor-level activity generated by different sources, and this can obscure differential experimental modulations of these sources. Additionally, in extracranial data, sensor-level phase coupling not only reflects communicating populations, but can also be generated by a current dipole, whose sensor-level phase coupling does not reflect source-level interactions. We present a novel method, which is capable of separating and characterizing sources on the basis of their phase coupling patterns as a function of space, frequency and time (trials). Importantly, this method depends on a plausible model of a neurobiological rhythm. We present this model and an accompanying analysis pipeline. Next, we demonstrate our approach, using magnetoencephalographic (MEG) recordings during a cued tactile detection task as a case study. We show that the extracted components have overlapping spatial maps and frequency content, which are difficult to resolve using conventional pairwise measures. Because our decomposition also provides trial loadings, components can be readily contrasted between experimental conditions. Strikingly, we observed heterogeneity in alpha and beta sources with respect to whether their activity was suppressed or enhanced as a function of attention and performance, and this happened both in task relevant and irrelevant regions. This heterogeneity contrasts with the common view that alpha and beta amplitude over sensory areas are always negatively related to attention and performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4918966PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0154881PLOS

Publication Analysis

Top Keywords

phase coupling
16
neuronal activity
8
experimental conditions
8
sensor-level phase
8
alpha beta
8
attention performance
8
activity
5
rhythmic components
4
components extracranial
4
extracranial brain
4

Similar Publications

Ag(I)-promoted fragment coupling of peptide thioamides.

Org Biomol Chem

January 2025

School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 3010, Victoria, Australia.

Despite advances in solid phase peptide synthesis and peptide ligation, challenges remain in the assembly of polypeptides through coupling of peptide fragments. Herein we describe a new method for peptide fragment coupling employing the Ag(I)-promoted transformation of peptide thioamides. This process proceeds an isoimide-tethered intermediate, which undergoes an O-N acyl transfer to generate the polypeptide.

View Article and Find Full Text PDF

Comprehensive treatment strategy in a patient with systemic lupus erythematosus-related pulmonary artery hypertension: a case report.

Eur Heart J Case Rep

January 2025

Division of Cardiology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa Ward, Tokyo 142-8555, Japan.

Background: Although the prognosis in systemic lupus erythematosus (SLE) has dramatically improved, pulmonary artery hypertension (PAH) is one of the life-threatening comorbidities associated with SLE. The management of the comorbidity is occasionally challenging due to the lack of consensus regarding treatment options including immunosuppressive agents, selective pulmonary vasodilators, and cardiac rehabilitation.

Case Summary: A 28-year-old female who terminated prednisolone after remission of SLE by her own discretion 3 years ago developed dyspnoea on effort.

View Article and Find Full Text PDF

Biological activities of lichen extracts and UHPLC-ESI-QTOF-MS analysis of their secondary metabolites.

Front Pharmacol

January 2025

Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.

This research was designed to investigate the metabolite profiling, phenolics content, and the trypanocidal, nematicidal, antibacterial, antifungal, and free radical scavenging properties of Motyka. The air-dried material was extracted successively with dichloromethane and methanol (UlMeOH). Two phases were obtained from the extract with dichloromethane, one soluble in methanol (UlDCM-s) and the other insoluble (UlDCM-i).

View Article and Find Full Text PDF

A phase-transited lysozyme coating doped with strontium on titanium surface for bone repairing via enhanced osteogenesis and immunomodulatory.

Front Cell Dev Biol

January 2025

Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.

Introduction: Titanium is currently recognized as an excellent orthopedic implant material, but it often leads to poor osseointegration of the implant, and is prone to aseptic loosening leading to implant failure. Therefore, biofunctionalization of titanium surfaces is needed to enhance their osseointegration and immunomodulation properties to reduce the risk of implant loosening. We concluded that the utilization of PTL-Sr is a direct and effective method for the fabrication of multifunctional implants.

View Article and Find Full Text PDF

Iron (Fe) minerals possess a huge specific surface area and high adsorption affinity, usually considered as "rust tanks" of organic carbon (OC), playing an important role in global carbon storage. Microorganisms can change the chemical form of Fe by producing Fe-chelating agents such as side chains and form a stable complex with Fe(III), which makes it easier for microorganisms to use. However, in seasonal frozen soil thawing, the succession of soil Fe-cycling microbial communities and their coupling relationship with Fe oxides and Fe-bound organic carbon (Fe-OC) remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!