Background: Adenovirus type 5 (Ad5) achieved success as a conventional transgene vaccine vector in preclinical trials, however; achieved poor efficiency in some of the clinical trials, due to the major hurdle associated with Ad5 pre-existing immunity (PEI) in the majority of the human population.
Objective: We sought to generate Ad5-based chimeras to assess their capabilities to bypass this bottleneck and to induce antigen-specific humoral immune response.
Methods: A His6 tag was incorporated into the hypervariable region 2 (HVR2) of hexon3 (H3) capsid protein using the "Antigen Capsid-Incorporation" strategy. This lead to the construction of a viral chimera, Ad5H3-HVR2-His. Ad5H3 was generated previously by substituting the hexon of Ad5 (hexon5) with the hexon from adenovirus type 3 (Ad3).
Results: His6 was presented on the viral capsid surface and recognized by a His6 antibody. An in vitro neutralization assay with Ad5 sera indicated the ability of Ad5 chimeras to partially escape Ad5 immunity. Immunization with Ad5H3-HVR2-His generated significant humoral response to the incorporated tagged peptide, when compared to the immunizations with controls.
Conclusion: Based on our in vitro studies the data suggested that Ad5H3 as a novel chimeric vaccine platform yields the possibility to escape Ad5 neutralization, and the potential to generate robust humoral immunity against incorporated antigens using the "Antigen Capsid-Incorporation" strategy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4892130 | PMC |
http://dx.doi.org/10.2174/1874357901610010010 | DOI Listing |
Hum Gene Ther
December 2023
Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
Adenoviruses (AdVs) are being developed for oncolytic or vaccination therapy against existing and emerging conditions. Well-characterized replication-competent human and human primate AdVs expressing multiple payloads are desirable, but their replication in rodent models is limited. To score the timing of adenoviral gene expression in cell cultures, we developed fully replication-competent transcriptional reporter viruses for HAdV-C5, -B3, and -B35.
View Article and Find Full Text PDFOpen Virol J
June 2016
Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, 845 19 street south, Birmingham, AL,35294, USA; Center for AIDS Research, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
Background: Adenovirus type 5 (Ad5) achieved success as a conventional transgene vaccine vector in preclinical trials, however; achieved poor efficiency in some of the clinical trials, due to the major hurdle associated with Ad5 pre-existing immunity (PEI) in the majority of the human population.
Objective: We sought to generate Ad5-based chimeras to assess their capabilities to bypass this bottleneck and to induce antigen-specific humoral immune response.
Methods: A His6 tag was incorporated into the hypervariable region 2 (HVR2) of hexon3 (H3) capsid protein using the "Antigen Capsid-Incorporation" strategy.
Viruses
March 2016
Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
Due to the increasing amount of people afflicted worldwide with Chagas disease and an increasing prevalence in the United States, there is a greater need to develop a safe and effective vaccine for this neglected disease. Adenovirus serotype 5 (Ad5) is the most common adenovirus vector used for gene therapy and vaccine approaches, but its efficacy is limited by preexisting vector immunity in humans resulting from natural infections. Therefore, we have employed rare serotype adenovirus 48 (Ad48) as an alternative choice for adenovirus/Chagas vaccine therapy.
View Article and Find Full Text PDFVaccine
November 2015
State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510230, China. Electronic address:
Human adenoviruses 14 (HAdV-14) caused several clusters of acute respiratory disease (ARD) outbreaks in both civilian and military settings. The identification of the neutralizing epitopes of HAdV-14 is important for the surveillance and control of infection. Since the previous studies had indicated that the adenoviruses neutralizing epitopes were likely to be exposed on the surface of the hexon, four epitope peptides, A14R1 (residues 141-157), A14R2 (residues 181-189), A14R4 (residues 252-260) and A14R7 (residues 430-442) were predicted and mapped onto the 3D structures of hexon by homology modeling approach.
View Article and Find Full Text PDFVirology
January 2016
Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, USA; Center for AIDS Research, University of Alabama at Birmingham, Birmingham, AL 35294, USA. Electronic address:
Adenoviral (Ad) vectors in combination with the "Antigen Capsid-Incorporation" strategy have been applied in developing HIV-1 vaccines, due to the vectors׳ abilities in incorporating and inducing immunity of capsid-incorporated antigens. Variable loop 2 (V2)-specific antibodies were suggested in the RV144 trial to correlate with reduced HIV-1 acquisition, which highlights the importance of developing novel HIV-1 vaccines by targeting the V2 loop. Therefore, the V2 loop of HIV-1 has been incorporated into the Ad capsid protein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!