A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prepubertal Adiposity, Vitamin D Status, and Insulin Resistance. | LitMetric

Prepubertal Adiposity, Vitamin D Status, and Insulin Resistance.

Pediatrics

Institutes of Nutrition and Food Technology, and Department of Nutrition and Public Health Intervention Research, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom.

Published: July 2016

Objective: To evaluate the following from prepuberty to the puberty-onset: (1) changes in serum 25-hydroxyvitamin-D (25[OH]D), adiposity, and insulin resistance (IR); (2) the effect of prepubertal adiposity on serum 25(OH)D changes; and (3) the combined effect of prepubertal obesity and suboptimal-25(OH)D on IR at puberty-onset.

Methods: A total of 426 prepubertal children (∼54% girls) were followed during pubertal-onset assessing before and after puberty-onset serum 25(OH)D, adiposity (BMI and waist circumference) and IR indicators (homeostasis-model-assessment of IR [HOMA-IR]). Associations were tested using multiple and logistic regression models adjusted by age, gender, and seasonality.

Results: At puberty-onset, mean serum 25(OH)D decreased (32.2 ± 8.9 Tanner I vs 25.2 ± 8.3 ng/mL Tanner II) and total and central obesity increased (BMI-for-age-z-score ≥2 SD [%]: 16.4 vs 22.1; waist-circumference ≥75th percentile [%]: 27.2 vs 37.1, all P < .05). Children with higher adiposity before puberty onset had higher risk of suboptimal-25(OH)D (<30 ng/mL) in Tanner II (ie, odds ratio = 2.7 [1.1-6.7] for obesity and 2.7 [1.4-5.5] for central-obesity) after adjusting for relevant covariates. Children with higher adiposity and suboptimal-25(OH)D before puberty-onset had higher HOMA-IR compared with their counterparts in Tanner II (HOMA-IR: 2.8 [2.5-3.1] if central-obese and suboptimal-25[OH]D vs 2.1 [1.9-2.3] no central-obesity and optimal-25[OH]D).

Conclusions: We found that serum 25(OH)D declined with puberty-onset, likely because of adiposity increase. Moreover, children with the combined condition of central-obesity and suboptimal-25(OH)D before puberty-onset had higher pubertal IR. These results highlight the need of ensuring adequate-25(OH)D status before pubertal-onset, particularly in obese children.

Download full-text PDF

Source
http://dx.doi.org/10.1542/peds.2016-0076DOI Listing

Publication Analysis

Top Keywords

serum 25ohd
12
prepubertal adiposity
8
insulin resistance
8
puberty-onset serum
8
prepubertal
4
adiposity vitamin
4
vitamin status
4
status insulin
4
resistance objective
4
objective evaluate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!