Increased levels of soluble amyloid-beta (Aβ) oligomers are suspected to underlie Alzheimer's disease (AD) pathophysiology. These oligomers have been shown to form multi-subunit Aβ pores in bilayers and induce uncontrolled, neurotoxic, ion flux, particularly calcium ions, across cellular membranes that might underlie cognitive impairment in AD. Small molecule interventions that modulate pore activity could effectively prevent or ameliorate their toxic activity. Here we examined the efficacy of a small molecule, NPT-440-1, on modulating amyloid pore permeability. Co-incubation of B103 rat neuronal cells with NPT-440-1 and Aβ prevented calcium influx. In purified lipid bilayers, we show that a 10-15min preincubation, prior to membrane introduction, was required to prevent conductance. Thioflavin-T and circular dichroism both suggested a reduction in Aβ β-sheet content during this incubation period. Combined with previous studies on site-specific amino acid substitutions, these results suggest that pharmacological modulation of Aβ could prevent amyloid pore-mediated AD pathogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5116404 | PMC |
http://dx.doi.org/10.1016/j.nano.2016.06.001 | DOI Listing |
J Med Chem
January 2025
Ma̅tai Ha̅ora - Centre for Redox Biology and Medicine, Department of Biomedical Science and Pathology, University of Otago, Christchurch, Christchurch 8140, New Zealand.
In humans, the 2-oxoglutarate-dependent dioxygenases (2-OGDDs) catalyze hydroxylation reactions involved in cell metabolism, the biosynthesis of small molecules, DNA and RNA demethylation, the hypoxic response and the formation of collagen. The reaction is catalyzed by a highly oxidizing ferryl-oxo species produced when the active site non-heme iron engages molecular oxygen. Enzyme activity is specifically stimulated by l-ascorbic acid (ascorbate, vitamin C), an effect not well mimicked by other reducing agents.
View Article and Find Full Text PDFJ Med Chem
January 2025
Epics Therapeutics SA, rue Adrienne Bolland 47, Gosselies 6041, Belgium.
METTL3 is the RNA methyltransferase predominantly responsible for the addition of N-methyladenosine (mA), the most abundant modification to mRNA. The prevalence of mA and the activity and expression of METTL3 have been linked to the appearance and progression of acute myeloid leukemia (AML), thereby making METTL3 an attractive target for cancer therapeutics. We report herein the discovery and optimization of small-molecule inhibitors of METTL3, culminating in the selection of as an proof-of-concept compound.
View Article and Find Full Text PDFJ Leukoc Biol
January 2025
Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA.
Regulated sequential exocytosis of neutrophil granules is essential in orchestrating the innate immune response, while uncontrolled secretion causes inflammation. We developed and characterized Nexinhib20, a small-molecule inhibitor that targets azurophilic granule exocytosis in neutrophils by blocking the interaction between the small GTPase Rab27a and its effector JFC1. Its therapeutic potential has been demonstrated in several pre-clinical models of inflammatory disease.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea.
The design of organic-peptide hybrids has the potential to combine our vast knowledge of protein design with small molecule engineering to create hybrid structures with complex functions. Here, we describe the computational design of a photoswitchable Ca-binding organic-peptide hybrid. The designed molecule, designated Ca-binding switch (CaBS), combines an EF-hand motif from classical Ca-binding proteins such as calmodulin with a photoswitchable group that can be reversibly isomerized between a spiropyran (SP) and merocyanine (MC) state in response to different wavelengths of light.
View Article and Find Full Text PDFPLoS One
January 2025
Biomedical Sciences Research Institute, Centre for Genomic Medicine, Ulster University, Coleraine, Northern Ireland, United Kingdom.
Pseudoexfoliation glaucoma is a severe form of secondary open angle glaucoma and is associated with activation of the TGF-β pathway by TGF-β1. MicroRNAs (miRNAs) are small non-coding RNA species that are involved in regulation of mRNA expression and translation. To investigate what glaucomatous changes occur in the trabecular meshwork and how these changes may be regulated by miRNAs, we performed a bioinformatics analysis resulting in a miRNA-mRNA interactome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!