Structure-Driven Pharmacology of Transient Receptor Potential Channel Vanilloid 1.

Mol Pharmacol

Centro Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile (I.D.-F., R.L., F.G.-N.); Centro de Bioinformática y Biología Integrativa, Universidad Andrés Bello, Santiago, Chile (I.D.-F., J.C.-M., R.V.S., F.G.-N.); and Fraunhofer Chile Research, Santiago, Chile (I.D.-F.)

Published: September 2016

The transient receptor potential vanilloid 1 (TRPV1) ion channel is a polymodal receptor that mediates the flux of cations across the membrane in response to several stimuli, including heat, voltage, and ligands. The best known agonist of TRPV1 channels is capsaicin, the pungent component of "hot" chili peppers. In addition, peptides found in the venom of poisonous animals, along with the lipids phosphatidylinositol 4,5-biphosphate, lysophosphatidic acid, and cholesterol, bind to TRPV1 with high affinity to modulate channel gating. Here, we discuss the functional evidence regarding ligand-dependent activation of TRPV1 channels in light of structural data recently obtained by cryoelectron microscopy. This review focuses on the mechanistic insights into ligand binding and allosteric gating of TRPV1 channels and the relevance of accurate polymodal receptor biophysical characterization for drug design in novel pain therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1124/mol.116.104430DOI Listing

Publication Analysis

Top Keywords

trpv1 channels
12
transient receptor
8
receptor potential
8
polymodal receptor
8
trpv1
5
structure-driven pharmacology
4
pharmacology transient
4
receptor
4
potential channel
4
channel vanilloid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!