Controlling neural circuits is a powerful approach to uncover a causal link between neural activity and behaviour. Optogenetics has been widely adopted by the neuroscience community as it offers cell-type-specific perturbation with millisecond precision. However, these studies require light delivery in complex patterns with cellular-scale resolution, while covering a large volume of tissue at depth in vivo. Here we describe a novel high-density silicon-based microscale light-emitting diode (μLED) array, consisting of up to ninety-six 25 μm-diameter μLEDs emitting at a wavelength of 450 nm with a peak irradiance of 400 mW/mm(2). A width of 100 μm, tapering to a 1 μm point, and a 40 μm thickness help minimise tissue damage during insertion. Thermal properties permit a set of optogenetic operating regimes, with ~0.5 °C average temperature increase. We demonstrate depth-dependent activation of mouse neocortical neurons in vivo, offering an inexpensive novel tool for the precise manipulation of neural activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4917834PMC
http://dx.doi.org/10.1038/srep28381DOI Listing

Publication Analysis

Top Keywords

neural activity
8
depth-specific optogenetic
4
optogenetic control
4
control vivo
4
vivo scalable
4
scalable high-density
4
high-density μled
4
neural
4
μled neural
4
neural probe
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!