One of the crucial characteristics of functionalized thin films is their porosity (i.e., the ratio between the pore volume and the volume of the whole film). Due to the very low amount of material per coated area corresponding to thin films, it is a challenge for analytics to measure the film porosity. In this work, we present an approach to determine the porosity of thin films by means of electron probe microanalysis (EPMA) either by wavelength-dispersive X-ray spectrometry (WDX) or by energy-dispersive X-ray spectrometry (EDX) with a scanning electron microscope (SEM). The procedure is based on the calculation of the film mass deposition from electron-excited X-ray spectra. The mass deposition is converted into film density by division of measured film thickness. Finally, the film porosity is calculated from the measured film density and the density of bulk, nonporous film material. The general applicability of the procedure to determine the porosity is demonstrated on thin templated mesoporous TiO2 films, dip-coated on silicon wafer, with controlled porosity in the range of 15 to 50%. The high accuracy of the mass deposition as determined from X-ray spectra was validated with independent methods (ICP-OES and weighing). Furthermore, for the validation of the porosity results, ellipsometry, interference fringes method (IFM), and focused ion beam (FIB) cross sectioning were employed as independent techniques. Hence, the approach proposed in the present study is proven to be suited as a new analytical tool for accurate and relatively fast determination of the porosity of thin films.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.6b00847DOI Listing

Publication Analysis

Top Keywords

thin films
20
porosity thin
12
x-ray spectra
12
mass deposition
12
porosity
9
electron-excited x-ray
8
film
8
film porosity
8
determine porosity
8
x-ray spectrometry
8

Similar Publications

The (PSS) experiment was part of the European Space Agency's mission and was conducted on the International Space Station from 2014 to 2016. The PSS experiment investigated the properties of montmorillonite clay as a protective shield against degradation of organic compounds that were exposed to elevated levels of ultraviolet (UV) radiation in space. Additionally, we examined the potential for montmorillonite to catalyze UV-induced breakdown of the amino acid alanine and its potential to trap the resulting photochemical byproducts within its interlayers.

View Article and Find Full Text PDF

Asymmetric self-organization from a symmetric film by phase separation.

Nanoscale

January 2025

Department of Materials Science and Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu 804-8550, Japan.

Self-organization realizes various nanostructures to control material properties such as superconducting vortex pinning and thermal conductivity. However, the self-organization of nucleation and growth is constrained by the growth geometric symmetry. To realize highly controlled three-dimensional nanostructures by self-organization, nanostructure formation that breaks the growth geometric symmetry thermodynamically and kinetically, such as tilted or in-plane aligned nanostructures, is a challenging issue.

View Article and Find Full Text PDF

Molecular junctions (MJs) are celebrated nanoelectronic devices for mimicking conventional electronic functions, including rectifiers, sensors, wires, switches, transistors, negative differential resistance, and memory, following an understanding of charge transport mechanisms. However, capacitive nanoscale molecular junctions are rarely seen. The present work describes electrochemically (E-Chem) grown covalently attached molecular thin films of 10, 14.

View Article and Find Full Text PDF

Malaria and Dengue Co-infection: A Comprehensive Study in Peshawar, Pakistan.

Cureus

December 2024

Internal Medicine, Medical Teaching Institution (MTI) Hayatabad Medical Complex, Peshawar, PAK.

Background: Malaria and dengue are significant mosquito-borne diseases prevalent in tropical and subtropical climates, with increasing reports of co-infections. This study aimed to determine the frequency, patterns, and risk factors of these co-infections in Peshawar.

Methods: A cross-sectional study was conducted from June to December 2023 in three tertiary care hospitals in Peshawar.

View Article and Find Full Text PDF

Weak Antilocalization and Negative Magnetoresistance of the Gate-Tunable PbTe Thin Films.

J Phys Chem Lett

January 2025

Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China.

We have systematically studied the electromagnetic transport properties of PbTe thin films under gate voltage modulation. The system demonstrates pronounced electron-electron interactions exclusively within the gate voltage range where only hole carriers are present. Furthermore, the Berry phase is utilized to qualitatively elucidate the transition between weak antilocalization (WAL) and weak localization (WL) through the regulation of gate voltage and temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!