Steady state and time resolved spectroscopic measurements have been exploited to assign the emissions from different conformations of α-furil (2, 2'-furil) in solution phase at room temperature as well as cryogen (liquid nitrogen, LN2) frozen matrices of ethanol and methylcyclohexane. Room temperature studies reveal a single fluorescence from the trans-planar conformer of the fluorophore or two fluorescence bands coming from the trans-planar and the relaxed skew forms depending on excitation at the nπ(∗) or the ππ(∗) absorption band, respectively. Together with the fluorescence bands, the LN2 studies in both the solvents unambiguously ascertain two phosphorescence emissions with lifetimes 5 ± 0.3 ms (trans-planar triplet) and 81 ± 3 ms (relaxed skew triplet). Quantum chemical calculations have been performed using density functional theory at CAM-B3LYP/6-311++G(∗∗) level to prop up the spectroscopic surveillance. The simulated potential energy curves (PECs) illustrate that α-furil is capable of giving two emissions from each of the S1 and the T1 states-one corresponding to the trans-planar and the other to the relaxed skew conformation. Contrary to the other 1,2-dicarbonyl molecular systems like benzil and α-naphthil, α-furil does not exhibit any fluorescence from its second excited singlet (S2) state. This is ascribed to the proximity of the minimum of the PEC of the S2 state and the hill-top of the PEC of the S1 state.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4954155DOI Listing

Publication Analysis

Top Keywords

room temperature
12
relaxed skew
12
quantum chemical
8
fluorescence bands
8
trans-planar relaxed
8
pec state
8
photophysics α-furil
4
α-furil room
4
temperature spectroscopic
4
spectroscopic quantum
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!