Ferrocene (Fc) in ether reduces HAuCl4 in water within seconds under ambient conditions in air upon stirring, forming ferricinium chloride stabilized water-soluble 20 nm gold nanoparticles (AuNPs) that are redispersible in the presence of poly(N-vinylmethylpyrrolidone) or NaBH4 + thiol. After reduction with NaBH4 yielding Fc and 26 nm sodium poly(hydroxyborate) stabilized AuNPs, the core size no longer changes following reactions with thiols providing (RS)nAuNPs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.6b01183DOI Listing

Publication Analysis

Top Keywords

ambient conditions
8
liquid-liquid interfacial
4
interfacial electron
4
electron transfer
4
transfer ferrocene
4
ferrocene goldiii
4
goldiii ultrasimple
4
ultrasimple ultrafast
4
ultrafast gold
4
gold nanoparticle
4

Similar Publications

Biological soil crusts (or biocrust) are diminutive soil communities with ecological functions disproportionate to their size. These communities are composed of lichens, bryophytes, cyanobacteria, fungi, liverworts, and other microorganisms. Creating stabilizing matrices, these microorganisms interact with soil surface minerals thereby enhancing soil quality by redistributing nutrients and reducing erosion by containment of soil particles.

View Article and Find Full Text PDF

Background: The COVID-19 pandemic highlighted the need for improved infectious aerosol concentrations through interventions that reduce the transmission of airborne infections. The aims of this review were to map the existing literature on interventions used to improve infectious aerosol concentrations in hospitals and understand challenges in their implementation.

Methods: We reviewed peer-reviewed articles identified on three databases, MEDLINE, Web of Science, and the Cochrane Library from inception to July 2024.

View Article and Find Full Text PDF

The Aging Chemistry of Perovskite Precursor Solutions.

J Phys Chem Lett

January 2025

State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China.

A significant barrier to the commercialization of solution-processed perovskite solar cells (PSCs) is the chemical instability of the components in precursor solutions under ambient conditions. This instability leads to solution aging, which subsequently diminishes the quality and reproducibility of the resulting PSCs. Inspired by recent published works, which focused on the deprotonation of organic cations, the oxidation of iodide, and the formation of undesired byproducts, we here systematically summarize and provide an outlook on the research directions and perspectives of the origin of precursor solution aging and countermeasures, such as using stabilizing additives, redox shuttles, Schiff base reactions, and green solvents.

View Article and Find Full Text PDF

Effectual CH reclamation from CH/N blends by existing physisorbents in industrialization confronts the adversity of frustrated separation performance, weak structural strength, and restricted scale-up preparation. To solve aforesaid bottlenecks, herein, a strategy is presented to fabricate synergistic strong recognition binding sites in a robust and scalable optimum Cu(pma) with ultramicroporous feature regarding superb CH separation versus N. By virtue of the synergistic contribution of multiple affinities accompanied by enormous potential field overlap of pore restriction, it imparts strong recognition binding toward CH molecules.

View Article and Find Full Text PDF

Tailoring Metal-Organic Frameworks for One-Step Separation of Alkane/Alkene/Alkyne Mixtures.

Chem Asian J

January 2025

Shenzhen Polytechnic University, Hoffmann Institute of Advanced Materials, 7098 Liuxian Blvd., 518055, Shenzhen, CHINA.

The purification of polymer-grade (>99.9%) olefins (mostly C2 and C3) represents a significant yet challenging process in petrochemical industry. The commonly employed method for hydrocarbon separation involves heat-driven distillations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!