Fabrication of Hydrogel Particles of Defined Shapes Using Superhydrophobic-Hydrophilic Micropatterns.

Adv Mater

Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 176344, Eggenstein-Leopoldshafen, Germany.

Published: September 2016

AI Article Synopsis

Article Abstract

High-throughput fabrication of freestanding hydrogel particles with defined geometry and size for 3D cell culture, cell screenings, and modular tissue engineering is reported. The method employs discontinuous dewetting using superhydrophobic-hydrophilic micropatterns.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201602350DOI Listing

Publication Analysis

Top Keywords

hydrogel particles
8
particles defined
8
superhydrophobic-hydrophilic micropatterns
8
fabrication hydrogel
4
defined shapes
4
shapes superhydrophobic-hydrophilic
4
micropatterns high-throughput
4
high-throughput fabrication
4
fabrication freestanding
4
freestanding hydrogel
4

Similar Publications

Orthopedic, maxillofacial, and complex dentoalveolar bone grafting procedures that require donor-site bone harvesting can be associated with post-surgical complications. There has been widespread adoption of exogenously sourced particulate bone graft materials (BGM) for bone regenerative procedures; however, the particulate nature of these materials may lead to compromised healing outcomes, mainly attributed to structural collapse of the BGM, prolonged tissue healing. In this study, a fully synthetic thermoresponsive hydrogel-based universal carrier matrix (TX) that forms flowable and shapable putties with different BGMs while spatially preserving the particles in a 3D scaffold at the implantation site is introduced.

View Article and Find Full Text PDF

A Universal Therapeutic Vaccine Leveraging Autologous Pre-Existing Immunity to Eliminate in Situ Uniformly Engineered Heterogeneous Tumor Cells.

Adv Mater

January 2025

Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China.

Tumor vaccines that activate the autologous immune system to eliminate tumor cells represent a promising approach in cancer immunotherapy. However, challenges such as tumor heterogeneity, limited antigen selection, insufficient antigen presentation, and the slow onset of de novo immune responses have resulted in poor universality and suboptimal response rates. In contrast, pathogen-specific pre-existing immunity acquired through infection or vaccination, can rapidly generate a more potent and enduring immune response upon re-encounter with the same antigen.

View Article and Find Full Text PDF

Introduction: Androgenetic alopecia (AGA) is a multifactorial and age-related dermatological disease that affects both males and females, usually at older ages. Traditional hair repair drugs exemplified by minoxidil have limitations such as skin irritation and hypertrichosis. Thus, attention has been shifted to the use of repurposing drugs.

View Article and Find Full Text PDF

Inspired by counterintuitive water "swelling" ability of the hydrophobic moss of the genus Sphagnum (Peat moss), we prepared a hydrophobic pseudo-hydrogel (HPH), composed of a pure hydrophobic silicone elastomer with a tailored porous structure. In contrast to conventional hydrogels, HPH achieves absorption-induced volume expansion through surface tension induced elastocapillarity, presenting an unexpected absorption-induced volume expansion capability in hydrophobic matrices. We adopt a theoretical framework elucidating the interplay of surface tension induced elastocapillarity, providing insights into the absorption-induced volume expansion behavior.

View Article and Find Full Text PDF

3D printed reservoir-like vaginal rings for antibiotic delivery.

Int J Pharm

January 2025

Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Giuseppe Colombo 71, 20133, Milano, Italy.

Targeting the development of a 3D printed reservoir-like vaginal rings (VRs) intended to fulfill the needs of precision medicine, prototypes ensuring prolonged release of metronidazole (MTZ) were preliminary manufactured and tested. Indeed, this drug represents the first-line therapy against bacterial vaginosis, which would especially benefit from convenient as well as easy dose adjustment and from more than 48 h continuous release, thus avoiding barely tolerated and repeated administrations. Starting from a soft thermoplastic elastomer (TPE), hollow ring structures were successfully printed at 190 °C and then extemporaneously filled with drug-loaded, in-situ-crosslinking hydrogel formulations based on alginate (ALG).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!