A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Efficacy of amelogenin-chitosan hydrogel in biomimetic repair of human enamel in pH-cycling systems. | LitMetric

Efficacy of amelogenin-chitosan hydrogel in biomimetic repair of human enamel in pH-cycling systems.

J Biomed Eng Inform

Center for Craniofacial Molecular Biology, Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, USA.

Published: March 2016

Amelogenin-chitosan (CS-AMEL) hydrogel has shown great potential for the prevention, restoration, and treatment of defective enamel. As a step prior to clinical trials, this study aimed to examine the efficacy of CS-AMEL hydrogel in biomimetic repair of human enamel with erosive or caries-like lesions in pH-cycling systems. Two models for enamel defects, erosion and early caries, were addressed in this study. Two pH-cycling systems were designed to simulate the daily cariogenic challenge as well as the nocturnal pH conditions in the oral cavity. After pH cycling and treatment with CS-AMEL hydrogel, a synthetic layer composed of oriented apatite crystals was formed on the eroded enamel surface. CS-AMEL repaired the artificial incipient caries by re-growing oriented crystals and reducing the depth of the lesions by up to 70% in the pH-cycling systems. The results clearly demonstrate that the CS-AMEL hydrogel is effective at the restoration of erosive and carious lesions under pH-cycling conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4912123PMC
http://dx.doi.org/10.5430/jbei.v2n1p119DOI Listing

Publication Analysis

Top Keywords

ph-cycling systems
16
cs-amel hydrogel
16
hydrogel biomimetic
8
biomimetic repair
8
repair human
8
human enamel
8
lesions ph-cycling
8
hydrogel
5
enamel
5
ph-cycling
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!