Objective: Co-stimulatory T cell cytokines are important in the progression of RA. This study investigates the interplay between 4-1BB, a disintegrin and metalloprotease-17 (ADAM17) and galectin-9 (Gal-9) in RA.

Methods: Stimulated mononuclear cells from patients with chronic RA (n = 12) were co-incubated with tissue inhibitor of metalloproteinase, 4-1BB ligand and Gal-9. Plasma samples were examined for soluble 4-1BB (s4-1BB) in newly diagnosed, treatment-naïve patients with RA (n = 97). The 28-joint DAS with CRP (28DAS-CRP), total Sharp score, erosion score and joint space narrowing were used to evaluate treatment outcome serially over a 2-year period.

Results: RA CD4(+) and CD8(+) synovial T cells express high levels of 4-1BB. The addition of TNF-α to cultured synovial mononuclear cells increased shedding of 4-1BB. 4-1BB ligand only increased TNF-α shedding in combination with Gal-9. RNA interference-mediated knockdown of ADAM17 or the addition of an ADAM17 inhibitor reduced the 4-1BB shedding. Shedding of 4-1BB was not influenced by Gal-9. Plasma levels of s4-1BB were increased in early RA and correlated with the number of swollen joints at baseline. After 3 months of treatment, the plasma levels of s4-1BB were equal to those of the controls. Baseline plasma levels of s4-1BB were inversely correlated with DAS28-CRP after 2 years of treatment, but not with total Sharp score, erosion score or joint space narrowing.

Conclusion: ADAM17 induces 4-1BB shedding in RA. Gal-9 is pivotal for the function of 4-1BB and induction of TNF-α. Furthermore, high plasma levels of s4-1BB were associated with the number of swollen joints, but also with a low DAS28-CRP after 2 years treatment in early RA.

Download full-text PDF

Source
http://dx.doi.org/10.1093/rheumatology/kew237DOI Listing

Publication Analysis

Top Keywords

plasma levels
16
levels s4-1bb
16
4-1bb
11
disintegrin metalloprotease-17
8
mononuclear cells
8
4-1bb ligand
8
gal-9 plasma
8
total sharp
8
sharp score
8
score erosion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!