The presence of mycotoxins (such as aflatoxins, deoxynivalenol, fumonisins, and patulin) is routinely monitored by the U.S. Food and Drug Administration (FDA) to ensure that their concentrations in food are below the levels requiring regulatory action or advisories. To improve the efficiency of mycotoxin analysis, the researchers at the FDA's Center for Food Safety and Applied Nutrition have been evaluating modern LC-MS technologies. Consequently, a variety of LC-tandem MS and LC-high-resolution MS methods have been developed, which simultaneously identify and quantitate multiple mycotoxins in foods and feeds. Although matrix effects (matrix-induced ion suppression or enhancement) associated with LC-MS-based mycotoxin analysis remain, this review discusses methods for managing these effects and proposes practical solutions for the future implementation of LC-MS-based multimycotoxin analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5740/jaoacint.16-0116 | DOI Listing |
Anal Chem
January 2025
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
Timely and accurate detection of trace mycotoxins in agricultural products and food is significant for ensuring food safety and public health. Herein, a deep learning-assisted and entropy-driven catalysis (EDC)-Argonaute powered fluorescence single-particle aptasensing platform was developed for ultrasensitive detection of fumonisin B (FB) using single-stranded DNA modified with biotin and red fluorescence-encoded microspheres as a signal probe and streptavidin-conjugated magnetic beads as separation carriers. The binding of aptamer with FB releases the trigger sequence to mediate EDC cycle to produce numerous 5'-phosphorylated output sequences, which can be used as the guide DNA to activate downstream Argonaute (Ago) for cleaving the signal probe, resulting in increased number of fluorescence microspheres remaining in the final reaction supernatant after magnetic separation.
View Article and Find Full Text PDFFood Chem X
January 2025
State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
Here, we report a SERS based VFA using PNC as a sensing substrate for highly sensitive multiplex mycotoxins detection. The PNC was fabricated by filtration-based self-assembled monodisperse SiO NPs on a filter membrane as a template, and the obtained PNC had an ordered complementary inverse opal structure. In parallel, three kinds of Raman dyes encoding Au@Ag, Au@Ag and Au@Ag SERS nanotags were synthesized for the detection of OTA, AFB1 and ZON.
View Article and Find Full Text PDFBiochemistry (Mosc)
December 2024
Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
Food safety is one of the primary demands of modern society. Mycotoxins are toxic metabolites of food-contaminating fungi. Fungi enter the food chain by infecting crops and irreversibly contaminate them due to the structural stability of mycotoxins.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Food Inspection and Quarantine Technology Center of Shenzhen Customs, Shenzhen Academy of Inspection and Quarantine, Shenzhen, 518045, PR China.
Background: Ochratoxin A (OTA) is toxic secondary metabolites produced by fungi and can pose a serious threat to food safety and human health. Due to the high stability and toxicity, OTA contamination in agricultural products is of great concern. Therefore, the development of a highly sensitive and reliable OTA detection method is crucial to ensure food safety.
View Article and Find Full Text PDFPathogens
January 2025
Plant Omics Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa.
head blight (FHB) is a major disease affecting wheat production worldwide, caused by multiple species. In this study, seven strains were isolated from wheat fields across the Western Cape region of South Africa and identified through phylogenetic analysis. The strains were classified into three species complexes: the species complex (FGSC), species complex (FIESC), and species complex (FTSC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!