Background: Distinguishing recipient cells from donor ligament cells is difficult in the early graft-healing phase after anterior cruciate ligament (ACL) reconstruction. The ability to track the distribution and differentiation of recipient cells using genetically engineered transgenic (Tg) animals would have significant clinical and research effects on graft healing after ACL reconstruction.

Hypothesis: Kusabira-Orange Tg pigs may allow the tracking of recipient cells infiltrating the graft after ACL reconstruction. The repopulation of recipient cells within the graft would be apparent even in the early graft-healing phase when necrotic donor cells are still present.

Study Design: Descriptive laboratory study.

Methods: In 17 genetically engineered Tg pigs, which carried the red fluorescent protein Kusabira-Orange, ACL reconstruction was performed on the right knee using a digital flexor tendon harvested from wild-type pigs. Tissue samples harvested at different time points were subjected to histological, immunohistochemical, and electron microscopic analyses.

Results: At 3 weeks postoperatively, recipient cells expressing red fluorescence embraced the graft and were infiltrating the central part of the graft. These cells with oval nuclei gradually infiltrated the gap of collagen fibers, losing their regular orientation. At 6 weeks, cellularity within the graft had doubled to match that of the native ACL, while acellular necrotic regions still existed centrally. Ubiquitous cellular distributions resembling the native ACL were observed at 24 weeks. Electron microscopic analysis showed that the mean collagen fibril diameter and density gradually decreased over 24 weeks.

Conclusion: Genetically engineered pigs carrying the Kusabira-Orange gene were useful animal models for analyzing intrinsic and extrinsic cellular dynamics during the course of graft healing after ACL reconstruction. Cellular repopulation by recipient cells occurred in the very early stage, and the cellular distribution within the graft resembled that in the native ACL by 24 weeks, but the reconstructed graft had not restored the ultrastructure of the native ACL by that stage.

Clinical Relevance: In allograft ACL reconstruction in a pig model, cellular repopulation was completed by 24 weeks after surgery, but the collagen matrix had not resumed the ultrastructure of the native ACL. Surgeons should be aware that risks may remain with returning to sports activities at 24 weeks after surgery.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0363546516650881DOI Listing

Publication Analysis

Top Keywords

recipient cells
24
acl reconstruction
20
native acl
20
cellular repopulation
12
genetically engineered
12
acl
11
cells
9
graft
9
collagen fibril
8
anterior cruciate
8

Similar Publications

Background: During orthotopic liver transplantation, allograft reperfusion is a dynamic point in the operation and often requires vasoactive medications and blood transfusions. Normothermic machine perfusion (NMP) of liver allografts has emerged to increase the number of transplantable organs and may have utility during donation after circulatory death (DCD) liver transplantation in reducing transfusion burden and vasoactive medication requirements.

Methods: This is a single-center retrospective study involving 226 DCD liver transplant recipients who received an allograft transported with NMP (DCD-NMP group) or with static cold storage (DCD-SCS group).

View Article and Find Full Text PDF

Purpose: Describe aims, methods, characteristics of donors, donor corneas and recipients, and potential impact of the Diabetes Endothelial Keratoplasty Study (DEKS).

Methods: The DEKS is a randomized, clinical trial to assess graft success and endothelial cell density (ECD) 1 year after Descemet membrane endothelial keratoplasty (DMEK) using corneas from donors with versus without diabetes in a 1:2 minimization assignment. Diabetes severity in the donor is assessed by medical history, postmortem HbA1c, and donor skin advanced glycation end-products and oxidation markers.

View Article and Find Full Text PDF

In pediatric hematopoietic cell transplantation (HCT) recipients, transplanted donor cells may need to function far beyond normal human lifespan. Here, we investigated the risk of clonal hematopoiesis (CH) in 144 pediatric long-term HCT survivors and 258 non-transplanted controls. CH was detected in 16% of HCT recipients and 8% of controls, at variant allele frequencies (VAFs) of 0.

View Article and Find Full Text PDF

Calcineurin inhibitors (CNIs) are indispensable immunosuppressants for transplant recipients and patients with autoimmune diseases, but chronic use causes nephrotoxicity, including kidney fibrosis. Why inhibiting calcineurin, a serine/threonine phosphatase, causes kidney fibrosis remains unknown. We performed single-nucleus RNA sequencing of the kidney from a chronic CNI nephrotoxicity mouse model and found an increased proportion of injured proximal tubule cells, which exhibited altered expression of genes associated with oxidative phosphorylation, cellular senescence and fibrosis.

View Article and Find Full Text PDF

Angiosarcoma is a rare and aggressive malignant tumor arising from vascular or lymphatic endothelial cells. Angiosarcoma at an arteriovenous fistula site is exceptionally rare. We report a case of a 37-year-old male renal transplant recipient who developed a high-grade epithelioid angiosarcoma at the site of an arteriovenous fistula six years post-transplant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!