Homologous recombination is increasingly being recognized as a driving force in microbial evolution. However, recombination in streptomycetes, a rich source of diverse secondary metabolites, particularly among different species, remains minimally investigated. In this study, the largest sample of Streptomyces species to date, consisting of 142 type strains spanning the genus, with available sequences of 16S rRNA, atpD, gyrB, recA, rpoB and trpB genes, were collected and subjected to a comprehensive population genetic analysis to generate an overall estimate of the level of Streptomyces interspecies genetic exchange and its effect on the evolution of this genus. The results indicate frequent homologous recombination among Streptomyces species, which occurred three times more frequently and was nearly 14 times more important than point mutation in nucleotide sequence divergence (ρ/θw=3.10, r/m=13.74). As a result, a facilitating effect on the evolutionary process and confusion in phylogenetic relationships were observed, as well as a number of specific transfer events of the six gene fragments. A resultant phylogenetic network depicted extensive horizontal genetic exchange which decays clonality in streptomycetes. Moreover, seven evolutionary lineage groups were identified in the present sample in the Structure analysis, generally consistent with morphological and physiological data, and the contribution of recombination was detected to be varied among them. Our analyses demonstrated a reticulate evolution within Streptomyces due to the high level of interspecies gene exchange, which greatly challenges the traditional tree-shaped phylogeny in this genus and may advance our evolutionary understanding of a genuine Streptomyces species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ympev.2016.06.004 | DOI Listing |
Cell Rep
January 2025
Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands. Electronic address:
Bacteria encode various DNA repair pathways to maintain genome integrity. However, the high degree of homology between DNA repair proteins or their domains hampers accurate identification. Here, we describe a stringent search strategy to identify DNA repair proteins and provide a systematic analysis of taxonomic distribution and co-occurrence of DNA repair proteins involved in RecA-dependent homologous recombination.
View Article and Find Full Text PDFMol Biol Evol
January 2025
Swiss Institute of Bioinformatics, Basel, Switzerland.
Bacterial genomes primarily diversify via gain, loss, and rearrangement of genetic material in their flexible accessory genome. Yet the dynamics of accessory genome evolution are very poorly understood, in contrast to the core genome where diversification is readily described by mutations and homologous recombination. Here, we tackle this problem for the case of very closely related genomes.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
cGAS plays an important role in regulating both tumor immune responses and DNA damage repair. Nevertheless, there was little research that comprehensively analyzed the correlation between cGAS and the tumor microenvironment, immune cell infiltration, and DNA damage repair in different cancers. In this study, The Cancer Genome Atlas (TCGA) and Cancer Cell Line Encyclopedia (CCLE) data were used to analyze the mRNA expression and genomic alterations of cGAS in pan-cancer.
View Article and Find Full Text PDFClin Transl Med
January 2025
Department of Breast, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China.
C1QBP exhibits heightened expression across a spectrum of tumours, thereby fostering their proliferation and metastasis, rendering it a pivotal therapeutic target. Nevertheless, to date, no pharmacological agents capable of directly targeting and inducing the degradation of C1QBP have been identified. In this study, we have unveiled a new peptide, PDBAG1, derived from the precursor protein GPD1, employing a peptidomics-based drug screening strategy.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
Tumor suppressor BRCA2 executes homologous recombination to repair DNA double-strand breaks in collaboration with RAD51, involving exon 11 and 27. Exon 11 constitutes a region where pathogenic variants (PVs) accumulate, and mutations in this region are known to contribute to carcinogenesis. However, the impact of the heterozygous PVs of BRCA2 exon 11 on the life quality beyond cancer risk, including male fertility, remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!