Electron-excited X-ray microanalysis performed with scanning electron microscopy and energy-dispersive spectrometry (EDS) has been used to measure trace elemental constituents of complex multielement materials, where "trace" refers to constituents present at concentrations below 0.01 (mass fraction). High count spectra measured with silicon drift detector EDS were quantified using the standards/matrix correction protocol embedded in the NIST DTSA-II software engine. Robust quantitative analytical results for trace constituents were obtained from concentrations as low as 0.000500 (mass fraction), even in the presence of significant peak interferences from minor (concentration 0.01≤C≤0.1) and major (C>0.1) constituents. Limits of detection as low as 0.000200 were achieved in the absence of peak interference.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S1431927616000738DOI Listing

Publication Analysis

Top Keywords

trace constituents
8
electron-excited x-ray
8
x-ray microanalysis
8
energy-dispersive spectrometry
8
constituents concentrations
8
mass fraction
8
constituents
5
measurement trace
4
constituents electron-excited
4
microanalysis energy-dispersive
4

Similar Publications

Treatment wetlands have emerged as a potential remediation option for oil-sands process affected waters (OSPW) which contains a suite of organic and inorganic constituents of potential concern. The aim of this study was to evaluate the fate of metals in a treatment wetland exposed to OSPW. Data was collected over three operational seasons testing freshwater and OSPW inputs at the Kearl Treatment Wetland in northern Alberta.

View Article and Find Full Text PDF

Toward a Machine Learning Approach to Interpreting X-ray Spectra of Trace Impurities by Converting XANES to EXAFS.

J Phys Chem A

December 2024

Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.

The fact that the photoabsorption spectrum of a material contains information about the atomic structure, commonly understood in terms of multiple scattering theory, is the basis of the popular extended X-ray absorption spectroscopy (EXAFS) technique. How much of the same structural information is present in other complementary spectroscopic signals is not obvious. Here we use a machine learning approach to demonstrate that within theoretical models that accurately predict the EXAFS signal, the extended near-edge region does indeed contain the EXAFS-accessible structural information.

View Article and Find Full Text PDF

Realizing plasmonic nanogaps with a refractive index ( = 1) environment in metallic nanoparticle (NP) structures is highly attractive for a wide range of applications. So far in self-assembly-based approaches, without surface functionalization of metallic NPs, achieving such extremely small nanogaps is challenging. Surface functionalization introduces changes in the refractive index at nanogaps, which in turn deteriorates the desired plasmonic properties.

View Article and Find Full Text PDF

Tattoos have been a ubiquitous phenomenon throughout history. Now, the demand for tattoo removal for aesthetic or practical reasons is growing rapidly. This study outlines the results of field investigations into the chemical and biological removal of tattoo inks (Hexadecachlorinate copper phthalocyanine-CClCuN-CAS no° 1328-53-6).

View Article and Find Full Text PDF

Ferroptosis, as an iron-dependent cell death mediated by lipid peroxidation, has sparked great interest in the tumor research community. Targeting ferroptosis has been proven to be a new therapeutic opportunity for inhibiting tumor growth. However, it is challenging to precisely characterize the metabolic pattern of ferroptosis in heterogeneous tumors and further identify ferroptosis-associated metabolic vulnerabilities for tumor treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!