MiR-19a promotes cell proliferation and invasion by targeting RhoB in human glioma cells.

Neurosci Lett

JiNan University, Second Clinical Medicine College, Shenzhen People's Hospital, Department of Neurosurgery, Shenzhen, 518020, China.

Published: August 2016

MicroRNA-19a (miR-19a) is upregulated in different types of cancers, including gliomas, but its specific role and function in gliomas have yet to be fully elucidated. In this study, we found that miR-19a was significantly upregulated in human glioma tissues and cell lines. Overexpression of miR-19a by a miR-19a mimic promoted glioma cell proliferation and invasion. In contrast, miR-19a inhibitor suppressed cell proliferation and invasion. Furthermore, by a dual-luciferase reporter assay and expression analysis, we determined that Ras homolog family member B was a direct target of miR-19a. Knockdown of Ras homolog family member B could block cell proliferation and invasion induced by the miR-19a mimic. In conclusion, our study demonstrated that miR-19a upregulation is common in gliomas and that suppression of miR-19a expression inhibits cell proliferation and invasion, which indicates that miR-19a may act as an oncogene in gliomas.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2016.06.031DOI Listing

Publication Analysis

Top Keywords

cell proliferation
20
proliferation invasion
20
mir-19a
11
human glioma
8
mir-19a upregulated
8
mir-19a mimic
8
ras homolog
8
homolog family
8
family member
8
cell
6

Similar Publications

Background: Previously, we demonstrated that changes in circulating tumor DNA (ctDNA) are promising biomarkers for early response prediction (ERP) to immune checkpoint inhibitors (ICI) in metastatic urothelial cancer (mUC). In this study, we investigated the value of whole blood immunotranscriptomics for ERP-ICI and integrated both biomarkers into a multimodal model to boost accuracy.

Methods: Blood samples of 93 patients were collected at baseline and after 2-6 weeks of ICI for ctDNA (N=88) and immunotranscriptome (N=79) analyses.

View Article and Find Full Text PDF

Targeting oncogene-induced cellular plasticity for tumor therapy.

Adv Biotechnol (Singap)

July 2024

MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.

Cellular plasticity, the remarkable adaptability of cancer cells to survive under various stress conditions, is a fundamental hallmark that significantly contributes to treatment resistance, tumor metastasis, and disease recurrence. Oncogenes, the driver genes that promote uncontrolled cell proliferation, have long been recognized as key drivers of cellular transformation and tumorigenesis. Paradoxically, accumulating evidence demonstrates that targeting certain oncogenes to inhibit tumor cell proliferation can unexpectedly induce processes like epithelial-to-mesenchymal transition (EMT), conferring enhanced invasive and metastatic capabilities.

View Article and Find Full Text PDF

Variation in cancer risk between organs can not be explained by the degree of somatic clonal expansion.

Adv Biotechnol (Singap)

May 2024

State Key Labratory of Biocontrol, School of Life Sciences, Sun Yat-San University, Guangzhou, 510275, China.

Somatic clonal expansion refers to the proliferation and expansion of a cell clone within a multicellular organism. Since cancer also results from the uncontrolled proliferation of few cell clones, it is generally believed that aging-associated somatic clonal expansion observed in normal tissues represents a precancerous condition. For instance, hematological malignancy is often preceded by clonal hematopoiesis.

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) remains a challenging cancer type due to its resistance to standard treatments. Immunogenic cell death (ICD) has the potential to activate anti-tumor immunity, presenting a promising avenue for ccRCC therapies.

Methods: We analyzed data from GSE29609, TCGA-KIRC, and GSE159115 to identify ICD-related prognostic genes in ccRCC.

View Article and Find Full Text PDF

Bladder cancer (BC) is a major global health issue with a high recurrence rate and limited effective treatments. Over the past few years, it has become evident that miRNAs play a role in the carcinogenesis process, particularly in regulating genes that promote cancer cell proliferation and invasion. This review focuses on the extent to which natural products can act as potential miRNA modulators for the management of bladder cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!