Tongue cancer has a poor prognosis due to its early metastasis via lymphatic vessels. The present study aimed at evaluating lymphatic vessel density, relative density of lymphatic vessel, and diameter of lymphatic vessels and its predictive role in tongue cancer. Paraffin-embedded tongue and lymph node specimens (n = 113) were stained immunohistochemically with a polyclonal antibody von Willebrand factor, recognizing blood and lymphatic endothelium and with a monoclonal antibody podoplanin, recognizing lymphatic endothelium. The relative density of lymphatic vessels was counted by dividing the mean number of lymphatic vessels per microscopic field (podoplanin) by the mean number of all vessels (vWf) per microscopic field. The high relative density of lymphatic vessels (≥80 %) was associated with poor prognosis in tongue cancer. The relative density of lymphatic vessels predicted poor prognosis in the group of primary tumor size T1-T2 and in the group of non-metastatic cancer. The lymphatic vessel density and diameter of lymphatic vessels were not associated with tongue cancer survival. The relative density of lymphatic vessels might have clinically relevant prognostic impact. Further studies with increased number of patients are needed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00405-016-4150-yDOI Listing

Publication Analysis

Top Keywords

lymphatic vessels
36
relative density
24
density lymphatic
24
tongue cancer
16
lymphatic
14
poor prognosis
12
lymphatic vessel
12
vessels
10
high relative
8
density
8

Similar Publications

The pathobiology of neurovascular aging.

Neuron

January 2025

Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA. Electronic address:

As global life expectancy increases, age-related brain diseases such as stroke and dementia have become leading causes of death and disability. The aging of the neurovasculature is a critical determinant of brain aging and disease risk. Neurovascular cells are particularly vulnerable to aging, which induces significant structural and functional changes in arterial, venous, and lymphatic vessels.

View Article and Find Full Text PDF

Introduction: Lymphedema, a debilitating characterized by localized fluid retention and tissue swelling, results from abnormalities in the lymphatic system. In the case of primary lymphedema, this condition is attributed to malformations in lymphatic vessels or nodes, and it is marked by a relentless progression leading to irreversible tissue fibrosis after repetitive inflammation. Many questions regarding its treatment, such as the choice of the type of intervention and the timing, still remain unanswered.

View Article and Find Full Text PDF

Sex-related differences in the morphology of rectal mucosa-associated lymphoid tissues in C57BL/6NCrSlc mice.

Histol Histopathol

December 2024

Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.

Sex hormones regulate gut function and mucosal immunity; however, their specific effects on the mucosa-associated lymphoid tissue (MALT) in the rectum of mammals remain unclear. Here, we aimed to investigate the influence of sex on MALT in the rectum of mammals by focusing on the rectal mucosa-associated lymphoid tissues (RMALTs) of C57BL/6NCrSIc mice. Histological analysis revealed that RMALTs were predominantly located in the lamina propria and submucosa of the rectal mucosa, with a significant sex-related difference in the distance from the anorectal junction to the first appearance of the RMALT.

View Article and Find Full Text PDF

Premetastatic cancer cells often spread from the primary lesion through the lymphatic vasculature and, clinically, the presence or absence of lymph node metastases impacts treatment decisions. However, little is known about cancer progression via the lymphatic system or of the effect that the lymphatic environment has on cancer progression. This is due, in part, to the technical challenge of studying lymphatic vessels and collecting lymph fluid.

View Article and Find Full Text PDF

Dysfunctional lymphatic drainage from the central nervous system (CNS) has been linked to neuroinflammatory and neurodegenerative disorders, but our understanding of the lymphatic contribution to CNS fluid autoregulation remains limited. Here, we studied forces that drive the outflow of the cerebrospinal fluid (CSF) into the deep and superficial cervical lymph nodes (dcLN and scLN) and tested how the blockade of lymphatic networks affects CNS fluid homeostasis. Outflow to the dcLN occurred spontaneously in the absence of lymphatic pumping and was coupled to intracranial pressure (ICP), whereas scLN drainage was driven by pumping.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!