Noncovalent forces rule the interactions between biomolecules. Inspired by a biomolecular interaction found in aminoglycoside-RNA recognition, glucose-nucleobase pairs have been examined. Deoxyoligonucleotides with a 6-deoxyglucose insertion are able to hybridize with their complementary strand, thus exhibiting a preference for purine nucleobases. Although the resulting double helices are less stable than natural ones, they present only minor local distortions. 6-Deoxyglucose stays fully integrated in the double helix and its OH groups form two hydrogen bonds with the opposing guanine. This 6-deoxyglucose-guanine pair closely resembles a purine-pyrimidine geometry. Quantum chemical calculations indicate that glucose-purine pairs are as stable as a natural T-A pair.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201603510 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!