Aeromonas hydrophila is a gram-negative fish pathogenic bacterium, also responsible for causing opportunistic pathological conditions in humans. It causes a number of diseases in fish due to which the fish industry incurs huge economic losses annually. Due to problems of antibiotic resistance, and the rapidity with which the infection spreads among fishes, vaccination remains the most effective strategy to combat this infection in fish populations. Among various virulence factors associated with bacterial virulence, outer membrane proteins have been widely evaluated for their vaccine potential owing to their surface exposure and related role in pathogenicity. In the present study, we have investigated the immunogenic potential of a non-specific porin, outer membrane protein C (OmpC) whose expression is regulated by the two-component regulatory system and plays a major role in the survival of A. hydrophila under different osmolaric conditions. The full-length gene (~1 kb) encoding OmpC of A. hydrophila was cloned, characterized and expressed in E. coli. High yield (~112 mg/L at shake flask level) of the recombinant OmpC (rOmpC) (~40 kDa) of A. hydrophila was obtained upon purification from inclusion bodies using Ni(2+)-NTA affinity chromatography. Immunization with purified rOmpC in murine model generated high endpoint (>1:40,000) titers. IgG isotyping, ELISA and ELISPOT assay indicated mixed immune response with a TH2 bias. Also, the anti-rOmpC antibodies were able to agglutinate A. hydrophila in vitro and exhibited specific cross-reactivity with different Aeromonas strains, which will facilitate easy detection of different Aeromonas isolates in infected samples. Taken together, these data clearly indicate that rOmpC could serve as an effective vaccine against different strains of Aeromonas, a highly heterogenous group of bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12026-016-8807-9DOI Listing

Publication Analysis

Top Keywords

outer membrane
12
membrane protein
8
aeromonas hydrophila
8
mixed immune
8
immune response
8
hydrophila
6
aeromonas
5
recombinant outer
4
protein aeromonas
4
hydrophila elicits
4

Similar Publications

Vertebrate vision in dim-light environments is initiated by rod photoreceptor cells that express the photopigment rhodopsin, a G-protein coupled receptor (GPCR). To ensure efficient light capture, rhodopsin is densely packed into hundreds of membrane discs that are tightly stacked within the rod-shaped outer segment compartment. Along with its role in eliciting the visual response, rhodopsin serves as both a building block necessary for proper outer segment formation as well as a trafficking guide for a few outer segment resident membrane proteins.

View Article and Find Full Text PDF

Bacterial outer membrane vesicles (OMVs) have emerged as promising vehicles for anticancer drug delivery due to their inherent tumor tropism, immune-stimulatory properties, and potential for functionalization with therapeutic proteins. Despite their advantages, the high lipopolysaccharide (LPS) endotoxin content in the OMVs raises significant safety and regulatory challenges. In this work, we produce LPS-attenuated and LPS-free OMVs and systematically assess the effects of LPS modification on OMVs' physicochemical characteristics, membrane protein content, immune-stimulatory capacity, tolerability, and anticancer efficacy.

View Article and Find Full Text PDF

Spotted fever group Rickettsia (SFGR) infections remain largely under-investigated as causative agents of acute undifferentiated febrile illness (AUFI) in resource-limited settings. Few studies are available on the prevalence of SFGR infections in India, especially in eastern India. In a cross-sectional study conducted in 192 hospitalized adult and paediatric patients with AUFI, the frequency of SFGR using sequential PCR targeting genes encoding citrate synthase gene (gltA), 17 kDa lipoprotein precursor antigen (17kDa), outer membrane proteins A and B (omp A & omp B) was 6.

View Article and Find Full Text PDF

Molecular Characterization of Gene Encoding Outer Membrane Protein in Pathogenic Serovars in Iran.

J Trop Med

December 2024

Department of Microbiology, Agricultural Research, Education and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute, Karaj, Iran.

The protein is highly conserved among pathogenic serovars and it is expressed during both acute and chronic infections. The aim of this study was to clone and sequence of the protein-encoding gene of serovars. In this study, 23 pathogenic serovars and two nonpathogenic serovars were used.

View Article and Find Full Text PDF

PEG-PLGA nanoparticles deposited in and .

J Pharm Anal

December 2024

Institute of Infectious Disease and Infection Control, Jena University Hospital, Jena, 07747, Germany.

In our prior research, polymer nanoparticles (NPs) containing tobramycin displayed robust antibacterial efficacy against biofilm-embedded () and (. ) cells, critical pathogens in cystic fibrosis. In the current study, we investigated the deposition of a nanoparticulate carrier composed of poly(d,l-lactic--glycolic acid) (PLGA) and poly(ethylene glycol)--PLGA (PEG-PLGA) that was either covalently bonded with cyanine-5-amine (Cy5) or noncovalently bound with freely embedded cationic rhodamine B (RhB), which served as a drug surrogate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!