In this study we report the development and optimization of poly (D, L-lactide-co-glycolide) (PLGA) polymer encapsulated poorly aqueous soluble nonsteroidal antiandrogen drug bicalutamide, to develop a sustained release formulation for the treatment of prostate cancer. The bicalutamide-loaded PLGA nanoparticles were prepared by single emulsion (O/W) solvent evaporation method, and different process parameters like polymer concentration in the organic phase, surfactant concentration in aqueous phase and centrifugation speed for separation of nanoparticles were evaluated to optimize the drug-loaded nanoparticles. The optimum formulation of bicalutamide-loaded PLGA nanoparticles characterized extensively by different analytical techniques like laser light scattering to determine average particle size and size distribution, scanning electron microscopy (SEM) for surface morphology, powder X-ray diffraction (PXRD) for surface chemistry and differential scanning calorimetry (DSC) for thermogram properties. Significant decrease of crystallinity of bicalutamide confirms entrapment of the drug within the PLGA polymer matrix. Further, the drug encapsulation efficiency (EE) and in vitro drug release profile were measured by high-performance liquid chromatography and UV-spectrophotometry. In vitro drug release exhibited biphasic pattern with initial burst release followed by slow and continuous release up to 5 days. Optimum formulation of bicalutamide-loaded PLGA nanoparticles shows significant anti-tumor activity over prostate cancer cell lines (DU 145). The newly developed optimum formulation nanoparticles could be useful for sustained release delivery of bicalutamide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/21691401.2016.1196457 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!