Unravelling the complex mechanisms of transgenerational epigenetic inheritance.

Curr Opin Chem Biol

Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK. Electronic address:

Published: August 2016

There are numerous benefits to elucidating how our environment affects our health: from a greater understanding of adaptation to disease prevention. Evidence shows that stressors we are exposed to during our lifetime might cause disease in our descendants. Transgenerational epigenetic inheritance involves the transmission of 'information' over multiple generations via the gametes independent of the DNA base sequence. Despite extensive research, the epigenetic mechanisms remain unclear. Analysis of model organisms exposed to environmental insults (e.g., diet manipulation, stress, toxin exposure) or carrying mutations in the epigenetic regulatory machinery indicates that inheritance of altered DNA methylation, histone modifications, or non-coding RNAs are key mechanisms. Tracking inherited epigenetic information and its effects for multiple generations is a significant challenge to overcome.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpa.2016.06.008DOI Listing

Publication Analysis

Top Keywords

transgenerational epigenetic
8
epigenetic inheritance
8
multiple generations
8
epigenetic
5
unravelling complex
4
complex mechanisms
4
mechanisms transgenerational
4
inheritance numerous
4
numerous benefits
4
benefits elucidating
4

Similar Publications

The effects of chronically stressing male mice can be transmitted across generations by stress-specific changes in their sperm miRNA content, which induce stress-specific phenotypes in their offspring. However, how each stress paradigm alters the levels of distinct sets of sperm miRNAs is not known. We showed previously that exposure of male mice to chronic social instability (CSI) stress results in elevated anxiety and reduced sociability specifically in their female offspring across multiple generations because it reduces miR-34c levels in sperm of stressed males and their unstressed male offspring.

View Article and Find Full Text PDF

Copper-Induced Transgenerational Plasticity in Plant Defence Boosts Aphid Fitness.

Plant Cell Environ

January 2025

Institute of Organismic and Molecular Evolution, University of Mainz, Mainz, Rheinland-Pfalz, Germany.

Transgenerational plasticity in plants is an increasingly recognized phenomenon, yet it is mostly unclear whether transgenerational plasticity is relevant to both the fitness of the plant and its interacting species. Using monoclonal strains of the giant duckweed (Spirodela polyrhiza) and its native herbivore, the waterlily aphid (Rhopalosiphum nymphaeae), we assessed whether pre-treating plants with copper excess, both indoors and outdoors, induces transgenerational plasticity in plant defences that alter plant and herbivore fitness. Outdoors, copper pre-treatment tended to increase plant growth rates under recurring copper excess.

View Article and Find Full Text PDF

Epigenetic variation in light of population genetic practice.

Nat Commun

January 2025

Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany.

The evolutionary impact of epigenetic variation depends on its transgenerational stability and source - whether genetically determined, environmentally induced, or due to spontaneous, genotype-independent mutations. Here, we evaluate current approaches for investigating an independent role of epigenetics in evolution, pinpointing methodological challenges. We further identify opportunities arising from integrating epigenetic data with population genetic analyses in natural populations.

View Article and Find Full Text PDF

Male reproductive health is governed by an intricate interplay of genetic, epigenetic, and environmental factors. Epigenetic mechanisms-encompassing DNA methylation, histone modifications, and non-coding RNA activity-are crucial both for spermatogenesis and sperm maturation. However, oxidative stress, driven by excessive reactive oxygen species, disrupts these processes, leading to impaired sperm function and male infertility.

View Article and Find Full Text PDF

Miniature-inverted-repeat transposable elements contribute to phenotypic variation regulation of rice induced by space environment.

Front Plant Sci

January 2025

Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China.

Introduction: Rice samples exposed to the space environment have generated diverse phenotypic variations. Miniature-inverted-repeat transposable elements (MITEs), often found adjacent to genes, play a significant role in regulating the plant genome. Herein, the contribution of MITEs in regulating space-mutagenic phenotypes was explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!