Exercise Training Prevents Diaphragm Contractile Dysfunction in Heart Failure.

Med Sci Sports Exerc

1Department of Internal Medicine and Cardiology, Leipzig University-Heart Center, Leipzig, GERMANY; 2Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, Leipzig, GERMANY; 3Department of Cardiac Surgery, Leipzig University-Heart Center, Leipzig, GERMANY; and 4Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, GERMANY.

Published: November 2016

Purpose: Patient studies have demonstrated the efficacy of exercise training in attenuating respiratory muscle weakness in chronic heart failure (HF), yet direct assessment of muscle fiber contractile function together with data on the underlying intracellular mechanisms remains elusive. The present study, therefore, used a mouse model of HF to assess whether exercise training could prevent diaphragm contractile fiber dysfunction by potentially mediating the complex interplay between intracellular oxidative stress and proteolysis.

Methods: Mice underwent sham operation (n = 10) or a ligation of the left coronary artery and were randomized to sedentary HF (n = 10) or HF with aerobic exercise training (HF + AET; n = 10). Ten weeks later, echocardiography and histological analyses confirmed HF.

Results: In vitro diaphragm fiber bundles demonstrated contractile dysfunction in sedentary HF compared with sham mice that was prevented by AET, with maximal force 21.0 ± 0.7 versus 26.7 ± 1.4 and 25.4 ± 1.4 N·cm, respectively (P < 0.05). Xanthine oxidase enzyme activity and MuRF1 protein expression, markers of oxidative stress and protein degradation, were ~20% and ~70% higher in sedentary HF compared with sham mice (P < 0.05) but were not different when compared with the HF + AET group. Oxidative modifications to numerous contractile proteins (i.e., actin and creatine kinase) and markers of proteolysis (i.e., proteasome and calpain activity) were elevated in sedentary HF compared with HF + AET mice (P < 0.05); however, these indices were not significantly different between sedentary HF and sham mice. Antioxidative enzyme activities were also not different between groups.

Conclusion: Our findings demonstrate that AET can protect against diaphragm contractile fiber dysfunction induced by HF, but it remains unclear whether alterations in oxidative stress and/or protein degradation are primarily responsible.

Download full-text PDF

Source
http://dx.doi.org/10.1249/MSS.0000000000001016DOI Listing

Publication Analysis

Top Keywords

exercise training
16
diaphragm contractile
12
oxidative stress
12
sedentary compared
12
sham mice
12
contractile dysfunction
8
heart failure
8
contractile fiber
8
fiber dysfunction
8
compared sham
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!