Investigation of powered 2-wheeler accident involvement in urban arterials by considering real-time traffic and weather data.

Traffic Inj Prev

a National Technical University of Athens, School of Civil Engineering, Department of Transportation Planning and Engineering , Zografou-Athens , Greece.

Published: April 2017

Objective: Understanding the various factors that affect accident risk is of particular concern to decision makers and researchers. The incorporation of real-time traffic and weather data constitutes a fruitful approach when analyzing accident risk. However, the vast majority of relevant research has no specific focus on vulnerable road users such as powered 2-wheelers (PTWs). Moreover, studies using data from urban roads and arterials are scarce. This study aims to add to the current knowledge by considering real-time traffic and weather data from 2 major urban arterials in the city of Athens, Greece, in order to estimate the effect of traffic, weather, and other characteristics on PTW accident involvement.

Methods: Because of the high number of candidate variables, a random forest model was applied to reveal the most important variables. Then, the potentially significant variables were used as input to a Bayesian logistic regression model in order to reveal the magnitude of their effect on PTW accident involvement.

Results: The results of the analysis suggest that PTWs are more likely to be involved in multivehicle accidents than in single-vehicle accidents. It was also indicated that increased traffic flow and variations in speed have a significant influence on PTW accident involvement. On the other hand, weather characteristics were found to have no effect.

Conclusions: The findings of this study can contribute to the understanding of accident mechanisms of PTWs and reduce PTW accident risk in urban arterials.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15389588.2016.1198871DOI Listing

Publication Analysis

Top Keywords

traffic weather
16
ptw accident
16
urban arterials
12
real-time traffic
12
weather data
12
accident risk
12
accident
8
accident involvement
8
considering real-time
8
weather characteristics
8

Similar Publications

Objective: This study aims to address the issue of driving safety on highways in the desert region of Northwest China during extreme weather conditions such as sandstorms, with the goal of reducing driver risk. It explores driver behavior under extreme conditions of sandstorms and sand accumulation, proposing safety speed recommendations and warning models for different environments to calculate the optimal warning distance in windy and sandy conditions.

Methods: Natural driving simulation experiments were conducted in windy and sandy environments, collecting driving behavior data from 45 drivers under varying visibility and road conditions with or without sand accumulation.

View Article and Find Full Text PDF

Genome-wide identification of the Sec14 gene family and the response to salt and drought stress in soybean (Glycine max).

BMC Genomics

January 2025

Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.

Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.

View Article and Find Full Text PDF

The focus of this study is to investigate the underexplored operational effects of disengagements on the speed of an automated shuttle, providing novel insights into their disruptive impact on performance metrics. For this purpose, global positioning system data, disengagement records, weather reports, and roadway geometry data from an automated shuttle pilot program, from July to December 2023, at the University of North Carolina in Charlotte, were collected. The automated shuttle uses sensors for localization, navigation, and obstacle detection.

View Article and Find Full Text PDF

Discretely monitoring traffic systems and tracking payloads on vehicle targets can be challenging when traversal occurs off main roads where overhead traffic cameras are not present. This work proposes a portable roadside vehicle detection system as part of a solution for tracking traffic along any path. Training semantic segmentation networks to automatically detect specific types of vehicles while ignoring others will allow the user to track payloads present only on certain vehicles of interest, such as train cars or semi-trucks.

View Article and Find Full Text PDF

DynamicVLN: Incorporating Dynamics into Vision-and-Language Navigation Scenarios.

Sensors (Basel)

January 2025

Department of Electronics and Electrical Engineering, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.

Traditional Vision-and-Language Navigation (VLN) tasks require an agent to navigate static environments using natural language instructions. However, real-world road conditions such as vehicle movements, traffic signal fluctuations, pedestrian activity, and weather variations are dynamic and continually changing. These factors significantly impact an agent's decision-making ability, underscoring the limitations of current VLN models, which do not accurately reflect the complexities of real-world navigation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!