We have studied the effects of Ba++, a known K+ channel blocker, on the electrophysiological properties of the glial cells of Necturus optic nerve. The addition of Ba++ reversibly depolarized glial cells by 25-50 mV; the half maximal deplorization was obtained with a Ba++ concentration of approximately 0.3 mM. In the presence of Ba++, the sensitivity of the membrane to changes in K+ was reduced and there was evidence of competition between K+ and Ba++ for the K+ channel. These effects, which were accompanied by a large increase in the input resistance of the glial cells, indicate that Ba++ blocks the K+ conductance in glial cells of Necturus optic nerve. With the K+ conductance reduced, we were able to investigate the presence of other membrane conductances. We found that in the presence of Ba++, the addition of HCO3- caused a Na+-dependent hyperpolarization that was sensitive to the disulfonic stilbene SITS (4-acetamido-4'-isothiocyanostilbene-2, 2'-disulfonic acid). Removal of Na+ resulted in a HCO3- -dependent, SITS-sensitive depolarization. These results are consistent with the presence in the glial membrane of an electrogenic Na+/HCO3- cotransporter in which Na+, HCO3-, and net negative charge are transported in the same direction. In Cl- -free solutions, the Ba++-induced depolarization increased, suggesting a small permeability to Cl-. Using voltage-sensitive dyes and a photodiode array for multiple site optical recording, the distribution of potential changes in response to square pulses of intracellularly injected current were recorded before and after the addition of increased and the decay of amplitude as a function of distance decreased. Such results indicate that Ba++ increases the membrane resistance more than the resistance of the intercellular junctions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216223PMC
http://dx.doi.org/10.1085/jgp.93.4.731DOI Listing

Publication Analysis

Top Keywords

glial cells
20
cells necturus
12
necturus optic
12
optic nerve
12
voltage-sensitive dyes
8
ba++
8
ba++ channel
8
presence ba++
8
indicate ba++
8
na+ hco3-
8

Similar Publications

Microglial polarization and ferroptosis are important pathological features in Alzheimer's disease (AD). Ghrelin, a brain-gut hormone, has potential neuroprotective effects in AD. This study aimed to explore the potential mechanisms by which ghrelin regulates the progression of AD, as well as the crosstalk between microglial polarization and ferroptosis.

View Article and Find Full Text PDF

Background: A neuroinflammatory disease such as Alzheimer's disease, presents a significant challenge in neurotherapeutics, particularly due to the complex etiology and allostatic factors, referred to as CNS stressors, that accelerate the development and progression of the disease. These CNS stressors include cerebral hypo-glucose metabolism, hyperinsulinemia, mitochondrial dysfunction, oxidative stress, impairment of neuronal autophagy, hypoxic insults and neuroinflammation. This study aims to explore the efficacy and safety of DAG-MAG-ΒHB, a novel ketone diester, in mitigating these risk factors by sustaining therapeutic ketosis, independent of conventional metabolic pathways.

View Article and Find Full Text PDF

Neurodegenerative diseases are characterized by progressive loss of neurons and persistent inflammation. Neurons are terminally differentiated cells, and lost neurons cannot be replaced since neurogenesis is restricted to only two neurogenic niches in the adult brain, whose neurogenic potential decreases with age. In this regard, the astrocytes reprogramming into neurons may represent a promising strategy for restoring the lost neurons and rebuilding neural circuits.

View Article and Find Full Text PDF

Neuroinflammatory Loop in Schizophrenia, Is There a Relationship with Symptoms or Cognition Decline?

Int J Mol Sci

January 2025

Departamento de Ciencias Biológicas y Químicas, Facultad De Medicina y Ciencia, Universidad San Sebastián, Sede Tres Pascualas Lientur 1457, Concepción 4080871, Chile.

Schizophrenia (SZ), a complex psychiatric disorder of neurodevelopment, is characterised by a range of symptoms, including hallucinations, delusions, social isolation and cognitive deterioration. One of the hypotheses that underlie SZ is related to inflammatory events which could be partly responsible for symptoms. However, it is unknown how inflammatory molecules can contribute to cognitive decline in SZ.

View Article and Find Full Text PDF

Brain ischemia causes disruption in cerebral blood flow and blood-brain barrier integrity, which are normally maintained by astrocyte endfeet. Emerging evidence points to dysregulation of the astrocyte translatome during ischemia, but its effects on the endfoot translatome are unknown. In this study, we aimed to investigate the early effects of ischemia on the astrocyte endfoot translatome in a rodent cerebral ischemia and reperfusion model of stroke.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!