A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Novel Anticancer Agents Based on Targeting the Trimer Interface of the PRL Phosphatase. | LitMetric

Novel Anticancer Agents Based on Targeting the Trimer Interface of the PRL Phosphatase.

Cancer Res

Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, and Purdue Center for Drug Discovery, Purdue University, West Lafayette, Indiana. Department of Chemistry, Purdue University, West Lafayette, Indiana. Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana.

Published: August 2016

Phosphatase of regenerating liver (PRL) oncoproteins are phosphatases overexpressed in numerous types of human cancer. Elevated levels of PRL associate with metastasis and poor clinical outcomes. In principle, PRL phosphatases offer appealing therapeutic targets, but they remain underexplored due to the lack of specific chemical probes. In this study, we address this issue by exploiting a unique property of PRL phosphatases, namely, that they may function as homotrimers. Starting from a sequential structure-based virtual screening and medicinal chemistry strategy, we identified Cmpd-43 and several analogs that disrupt PRL1 trimerization. Biochemical and structural analyses demonstrate that Cmpd-43 and its close analogs directly bind the PRL1 trimer interface and obstruct PRL1 trimerization. Cmpd-43 also specifically blocks the PRL1-induced cell proliferation and migration through attenuation of both ERK1/2 and Akt activity. Importantly, Cmpd-43 exerted potent anticancer activity both in vitro and in vivo in a murine xenograft model of melanoma. Our results validate a trimerization-dependent signaling mechanism for PRL and offer proof of concept for trimerization inhibitors as candidate therapeutics to treat PRL-driven cancers. Cancer Res; 76(16); 4805-15. ©2016 AACR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4987244PMC
http://dx.doi.org/10.1158/0008-5472.CAN-15-2323DOI Listing

Publication Analysis

Top Keywords

trimer interface
8
prl phosphatases
8
prl1 trimerization
8
prl
6
novel anticancer
4
anticancer agents
4
agents based
4
based targeting
4
targeting trimer
4
interface prl
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!