The role of pathological response in long-term outcome is still unclear in cervical cancer patients treated with neoadjuvant chemotherapy (NACT) in China. This study aimed to investigate the effect of optimal pathologic response (OPR) on survival in the patients treated with NACT and radical hysterectomy. First, 853 patients with stage IB2-IIB cervical cancer were included in a retrospective analysis; a Cox proportional hazards model was used to investigate the relationship between pathological response and disease-free survival (DFS). In the retrospective database, 64 (7.5%) patients were found to have achieved an OPR (residual disease <3 mm stromal invasion); in the multivariate Cox model, the risk of death was much greater in the non-OPR group than in the OPR group (HR, 2.61; 95%CI, 1.06 to 6.45; P = 0.037). Next, the role of OPR was also evaluated in a prospective cohort of 603 patients with cervical cancer. In the prospective cohort, 56 (9.3%) patients were found to have achieved an OPR; the log-rank tests showed that the risk of recurrence was higher in the non-OPR patients than in the OPR group (P = 0.05). After combined analysis, OPR in cervical cancer was found to be an independent prognostic factor for DFS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4915007PMC
http://dx.doi.org/10.1038/srep28278DOI Listing

Publication Analysis

Top Keywords

pathological response
12
cervical cancer
12
long-term outcome
8
patients stage
8
neoadjuvant chemotherapy
8
patients treated
8
patients
5
optimal pathological
4
response
4
response indicated
4

Similar Publications

Cells are subjected to dynamic mechanical environments which impart forces and induce cellular responses. In age-related conditions like pulmonary fibrosis, there is both an increase in tissue stiffness and an accumulation of senescent cells. While senescent cells produce a senescence-associated secretory phenotype (SASP), the impact of physical stimuli on both cellular senescence and the SASP is not well understood.

View Article and Find Full Text PDF

Role of immune cell homeostasis in research and treatment response in hepatocellular carcinoma.

Clin Exp Med

January 2025

Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.

View Article and Find Full Text PDF

Purpose: Carcinoembryonic antigen (CEA) is an important prognostic factor for rectal cancer. This study aims to introduce a novel cutoff point for CEA within the normal range to improve prognosis prediction and enhance patient stratification in rectal cancer patients.

Methods: A total of 316 patients with stages I to III rectal cancer who underwent surgical tumor resection were enrolled.

View Article and Find Full Text PDF

Genital tract infections are common causes of male infertility, and most of diagnosed men are asymptomatic. This study examined the effect of gallic acid (GA) against lipopolysaccharide (LPS)-induced testicular inflammation. Thirty-two Spraque Dawley, 2.

View Article and Find Full Text PDF

Melanoma is an immunogenic tumor. The melanoma tumor immune microenvironment (TIME) is made up of a heterogenous mix of both immune and non-immune cells as well as a multitude of signaling molecules. The interactions between tumor cells, immune cells and signaling molecules affect tumor progression and therapeutic responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!