Methylphenidate Causes Behavioral Impairments and Neuron and Astrocyte Loss in the Hippocampus of Juvenile Rats.

Mol Neurobiol

Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.

Published: August 2017

Although the use, and misuse, of methylphenidate is increasing in childhood and adolescence, there is little information about the consequences of this psychostimulant chronic use on brain and behavior during development. The aim of the present study was to investigate hippocampus biochemical, histochemical, and behavioral effects of chronic methylphenidate treatment to juvenile rats. Wistar rats received intraperitoneal injections of methylphenidate (2.0 mg/kg) or an equivalent volume of 0.9 % saline solution (controls), once a day, from the 15th to the 45th day of age. Results showed that chronic methylphenidate administration caused loss of astrocytes and neurons in the hippocampus of juvenile rats. BDNF and pTrkB immunocontents and NGF levels were decreased, while TNF-α and IL-6 levels, Iba-1 and caspase 3 cleaved immunocontents (microglia marker and active apoptosis marker, respectively) were increased. ERK and PKCaMII signaling pathways, but not Akt and GSK-3β, were decreased. SNAP-25 was decreased after methylphenidate treatment, while GAP-43 and synaptophysin were not altered. Both exploratory activity and object recognition memory were impaired by methylphenidate. These findings provide additional evidence that early-life exposure to methylphenidate can have complex effects, as well as provide new basis for understanding of the biochemical and behavioral consequences associated with chronic use of methylphenidate during central nervous system development.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-016-9987-yDOI Listing

Publication Analysis

Top Keywords

juvenile rats
12
chronic methylphenidate
12
methylphenidate
9
hippocampus juvenile
8
methylphenidate treatment
8
methylphenidate behavioral
4
behavioral impairments
4
impairments neuron
4
neuron astrocyte
4
astrocyte loss
4

Similar Publications

Autism spectrum disorder (ASD) is a complex developmental disorder characterized by several behavioral impairments, especially in socialization, communication, and the occurrence of stereotyped behaviors. In rats, prenatal exposure to valproic acid (VPA) induces autistic-like behaviors. Previous studies by our group have suggested that the autistic-like phenotype is possibly related to dopaminergic system modulation because tyrosine hydroxylase (TH) expression was affected.

View Article and Find Full Text PDF

Melatonin attenuates BDE-209-caused spatial memory deficits in juvenile rats through NMDAR-CaMKⅡγ-mediated synapse-to-nucleus signaling.

Food Chem Toxicol

January 2025

Department of Occupational and Environmental Health, School of Public Health, Jinzhou Medical University, Jinzhou, Liaoning, PR China. Electronic address:

Flame retardant polybrominated diphenyl ethers (PBDEs) accumulate in human bodies through food and dust ingestion, and cause neurobehavioral deficits with obscure mechanism. We aimed to investigate NMDAR-CaMKⅡγ-mediated synapse-to-nuclear communication involved in BDE-209-induced cognitive impairment, and alleviation from exogenous melatonin. Decreased NMDAR subunits GluN2A and 2B, autophosphorylation of CaMKⅡα, and postsynaptic GluA1 trafficking were observed in the hippocampus of juvenile rats after maternal BDE-209 exposure.

View Article and Find Full Text PDF

Attention deficit/hyperactivity disorder (ADHD) is defined as a neurodevelopmental condition. The precise underlying mechanisms remain incompletely elucidated. A body of research suggests disruptions in both the cellular architecture and neuronal function within the brain regions of individuals with ADHD, coupled with disturbances in the biochemical parameters.

View Article and Find Full Text PDF

Effects of Early Stress Exposure on Anxiety-like Behavior and Expression in Rats.

Biomolecules

December 2024

Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr University Bochum, 44801 Bochum, Germany.

Exposure to stress during early and late childhood can lead to long-lasting neurobiological and behavioral impairments. Although sensitive periods for stress exposure are well established, less is known about the trajectory of induced alterations throughout development. In this study, we investigated the impact of maternal separation (MS), social isolation, and their combination on anxiety-like behavior and gene expression across developmental stages.

View Article and Find Full Text PDF

Antihypertensive Effects of a Sodium Thiosulfate-Loaded Nanoparticle in a Juvenile Chronic Kidney Disease Rat Model.

Antioxidants (Basel)

December 2024

Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.

Sodium thiosulfate (STS), a precursor of hydrogen sulfide (HS), has demonstrated antihypertensive properties. Previous studies have suggested that HS-based interventions can prevent hypertension in pediatric chronic kidney disease (CKD). However, the clinical application of STS is limited by its rapid release and intravenous administration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!