Plant remains dating to between 9000 and 8400 BP from a probable ditch structure at the Huxi site include the oldest rice (Oryza sativa) spikelet bases and associated plant remains recovered in China. The remains document an early stage of rice domestication and the ecological setting in which early cultivation was taking place. The rice spikelet bases from Huxi include wild (shattering), intermediate, and domesticated (non-shattering) forms. The relative frequency of intermediate and non-shattering spikelet bases indicates that selection for, at the very least, non-shattering rice was underway at Huxi. The rice also has characteristics of japonica rice (Oryza sativa subsp. japonica), helping to clarify the emergence of a significant lineage of the crop. Seeds, phytoliths and their context provide evidence of increasing anthropogenesis and cultivation during the occupation. Rice spikelet bases from Kuahuqiao (8000-7700 BP), Tianluoshan (7000-6500 BP), Majiabang (6300-6000 BP), and Liangzhu (5300-4300 BP) sites indicate that rice underwent continuing selection for reduced shattering and japonica rice characteristics, confirming a prolonged domestication process for rice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4914946PMC
http://dx.doi.org/10.1038/srep28136DOI Listing

Publication Analysis

Top Keywords

spikelet bases
16
rice
12
rice domestication
8
reduced shattering
8
plant remains
8
rice oryza
8
oryza sativa
8
rice spikelet
8
rice characteristics
8
japonica rice
8

Similar Publications

Identification and characterization of QSFS.sau-MC-5A for sterile florets genetically independent of fertile ones per spike in wheat.

Theor Appl Genet

September 2024

State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China.

A major and stable QTL for sterile florets per spike and sterile florets per spikelet was identified, it was mapped within a 2.22-Mb interval on chromosome 5AL, and the locus was validated using two segregating populations with different genetic backgrounds. Both the number of fertile florets per spike (FFS) and the number of sterile florets per spike (SFS) significantly influence the final yield of wheat (Triticum aestivum L.

View Article and Find Full Text PDF
Article Synopsis
  • Wheat grain yield is influenced by multiple factors, particularly spike fertility, which modern breeding methods have enhanced through domestication and genetic advances.
  • Researchers studied 110 recombinant inbred lines (RILs) from two distinct wheat types to explore the genetic factors behind spike fertility traits.
  • They identified 94 quantitative trait loci (QTLs) linked to various yield components, focusing on a significant QTL on chromosome 5B, potentially containing unknown genes related to spike fertility and revealing areas for future research on improving wheat yield.*
View Article and Find Full Text PDF
Article Synopsis
  • * Researchers discovered a mutation that causes longer glumes resembling lemmas, linked to a significant 1.27 Mb deletion on chromosome 2H, affecting five genetic candidates, including a CH zinc finger protein.
  • * A new barley line with long glumes and short awns was developed from this mutant, leading to heavier kernels and improved uniformity, thus enhancing the malting potential of six-rowed barley.
View Article and Find Full Text PDF

Grain size is a key component of grain yield in cereals. It is a complex quantitative trait controlled by multiple genes. Grain size is determined via several factors in different plant development stages, beginning with early tillering, spikelet formation, and assimilates accumulation during the pre-anthesis phase, up to grain filling and maturation.

View Article and Find Full Text PDF

Nitrogen and potassium interactions optimized asynchronous spikelet filling and increased grain yield of japonica rice.

PeerJ

January 2023

Jilin Provincial Key Laboratory of Soil Resource Sustainable Utilization for Commodity Grain Bases, Jilin Agricultural University/College of Resources and Environmental Science, Jilin Agricultural University, Changchun, China.

Poor grain filling severely reduces rice yield. Fertilizers play a vital role in regulating grain filling, especially nitrogen (N) and potassium (K). In this field study we aimed to investigate the interactive effects of N and K on the asynchronous filling properties of superior and inferior spikelets of japonica rice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!