Anomalous gray matter patterns in specific reading comprehension deficit are independent of dyslexia.

Ann Dyslexia

Vanderbilt Brain Institute, Vanderbilt University, 416C One Magnolia Circle, Nashville, TN, 37232, USA.

Published: October 2016

Specific reading comprehension deficit (SRCD) affects up to 10 % of all children. SRCD is distinct from dyslexia (DYS) in that individuals with SRCD show poor comprehension despite adequate decoding skills. Despite its prevalence and considerable behavioral research, there is not yet a unified cognitive profile of SRCD. While its neuroanatomical basis is unknown, SRCD could be anomalous in regions subserving their commonly reported cognitive weaknesses in semantic processing or executive function. Here we investigated, for the first time, patterns of gray matter volume difference in SRCD as compared to DYS and typical developing (TD) adolescent readers (N = 41). A linear support vector machine algorithm was applied to whole brain gray matter volumes generated through voxel-based morphometry. As expected, DYS differed significantly from TD in a pattern that included features from left fusiform and supramarginal gyri (DYS vs. TD: 80.0 %, p < 0.01). SRCD was well differentiated not only from TD (92.5 %, p < 0.001) but also from DYS (88.0 %, p < 0.001). Of particular interest were findings of reduced gray matter volume in right frontal areas that were also supported by univariate analysis. These areas are thought to subserve executive processes relevant for reading, such as monitoring and manipulating mental representations. Thus, preliminary analyses suggest that SRCD readers possess a distinct neural profile compared to both TD and DYS readers and that these differences might be linked to domain-general abilities. This work provides a foundation for further investigation into variants of reading disability beyond DYS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5061587PMC
http://dx.doi.org/10.1007/s11881-015-0114-yDOI Listing

Publication Analysis

Top Keywords

gray matter
12
specific reading
8
reading comprehension
8
comprehension deficit
8
srcd
6
anomalous gray
4
matter patterns
4
patterns specific
4
deficit independent
4
independent dyslexia
4

Similar Publications

Longitudinal neuroimaging studies offer valuable insight into brain development, ageing, and disease progression over time. However, prevailing analytical approaches rooted in our understanding of population variation are primarily tailored for cross-sectional studies. To fully leverage the potential of longitudinal neuroimaging, we need methodologies that account for the complex interplay between population variation and individual dynamics.

View Article and Find Full Text PDF

Repetitive drug use results in enduring structural and functional changes in the brain. Addiction research has consistently revealed significant modifications in key brain networks related to reward, habit, salience, executive function, memory and self-regulation. Techniques like Voxel-based Morphometry have highlighted large-scale structural differences in grey matter across distinct groups.

View Article and Find Full Text PDF

Central nervous system (CNS) pericytes play crucial roles in vascular development and blood-brain barrier maturation during prenatal development, as well as in regulating cerebral blood flow in adults. They have also been implicated in the pathogenesis of numerous neurological disorders. However, the behavior of pericytes in the adult brain after injury remains poorly understood, partly due to limitations in existing pericyte ablation models.

View Article and Find Full Text PDF

Purpose: To achieve high-resolution, three-dimensional (3D) quantitative diffusion-weighted MR spectroscopic imaging (DW-MRSI) for molecule-specific microstructural imaging of the brain.

Methods: We introduced and integrated several innovative acquisition and processing strategies for DW-MRSI: (a) a new double-spin-echo sequence combining selective excitation, bipolar diffusion encoding, rapid spatiospectral sampling, interleaved water spectroscopic imaging data, and a special sparsely sampled echo-volume-imaging (EVI)-based navigator, (b) a rank-constrained time-resolved reconstruction from the EVI data to capture spatially varying phases, (c) a model-based phase correction for DW-MRSI data, and (d) a multi-b-value subspace-based method for water/lipids removal and spatiospectral reconstruction using learned metabolite subspaces, and e) a hybrid subspace and parametric model-based parameter estimation strategy. Phantom and in vivo experiments were performed to validate the proposed method and demonstrate its ability to map metabolite-specific diffusion parameters in 3D.

View Article and Find Full Text PDF

Aberrant white matter function and structure in Rhegmatogenous retinal detachment: A study utilizing functional network clustering and TractSeg methods.

Neuroscience

March 2025

Ophthalmology Department of the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 Jiangxi Province, China. Electronic address:

Background: Previous studies have documented abnormal functional changes in the visual pathways and gray matter regions related to vision in Rhegmatogenous retinal detachment (RRD) patients. However, the extent of alterations in the functional and structural characteristics of white matter (WM) in these patients remains insufficiently understood.

Methods: In this study, we employed functional clustering networks and TractSeg methodologies to investigate the alterations in WM function and structure among patients with RRD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!