Exogenic electric fields can effectively accelerate bone healing and remodeling through the enhanced migration of bone marrow mesenchymal stem cells (BMSCs) toward the injured area. This study aimed to determine the following: (1) the direction of rat BMSC (rBMSC) migration upon exposure to a direct current electric field (DCEF), (2) the optimal DCEF intensity and duration, and (3) the possible regulatory role of SDF-1/CXCR4 axis in rBMSC migration as induced by DCEF. Results showed that rBMSCs migrated to the positive electrode of the DCEF, and that the DCEF of 200 mV/mm for 4 h was found to be optimal in enhancing rBMSC migration. This DCEF strength and duration also upregulated the expression of osteoblastic genes, including ALP and OCN, and upregulated the expression of ALP and Runx2 proteins. Moreover, when CXCR4 was inhibited, rBMSC migration due to DCEF was partially blocked. These findings indicated that DCEF can effectively induce rBMSC migration. A DCEF of 200 mV/mm for 4 h was recommended because of its ability to promote rBMSC migration, proliferation, and osteogenic differentiation. The SDF-1/CXCR4 signaling pathway may play an important role in regulating the DCEF-induced migration of rBMSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11684-016-0456-9 | DOI Listing |
Biomaterials
May 2025
Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea; Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, South Korea. Electronic address:
Chronic kidney disease (CKD) is a prevalent global health issue, primarily caused by glomerular dysfunction, diabetes, endovascular disorders, hypertensive nephrosclerosis, and other vascular diseases. Despite the increase in available organ sources, significant challenges remain in securing organ compatibility, prompting extensive research into creating a bio-artificial kidney free from immune rejection. In this study, a bio-engineered kidney was established using a stem cell chemoattractant within a bioreactor system; rBMSCs were used to recellularize the decellularized kidney scaffold coated with SDF-1α/AKI-CKD cytokine juice under mimic-hypoxic conditions as these chemokines and cytokines are crucial for the cell migration.
View Article and Find Full Text PDFInt J Biol Macromol
July 2024
The First Hospital of Jilin University, Changchun 130000, China. Electronic address:
The continuous stimulation of periodontitis leads to a decrease in the number of stem cells within the lesion area and significantly impairing their regenerative capacity. Therefore, it is crucial to promote stem cell homing and regulate the local immune microenvironment to suppress inflammation for the regeneration of periodontitis-related tissue defects. Here, we fabricated a novel multifunctional bilayer nanofibrous membrane using electrospinning technology.
View Article and Find Full Text PDFACS Omega
March 2024
Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, P. R. China.
Zinc (Zn) is a bioabsorbable metal that shows great potential as an implant material for orthopedic applications. Suitable concentrations of zinc ions promote osteogenesis, while excess zinc ions cause apoptosis. As a result, the conflicting impacts of Zn concentration on osteogenesis could prove to be significant problems for the creation of novel materials.
View Article and Find Full Text PDFFASEB J
January 2024
Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, People's Republic of China.
Mesenchymal stem cells (MSCs) are a popular cell source for repairing the liver. Improving the survival rate and colonization time of MSCs may significantly improve the therapeutic outcomes of MSCs. Studies showed that 78-kDa glucose-regulated protein (GRP78) expression improves cell viability and migration.
View Article and Find Full Text PDFJ Funct Biomater
July 2023
Department of Plastic and Reconstructive Surgery, College of Medicine, Soonchunhyang University, Cheonan 31538, Republic of Korea.
The management of skin injuries is one of the most common concerns in medical facilities. Different types of biomaterials with effective wound-healing characteristics have been studied previously. In this study, we used alginate (Alg) and hyaluronic acid (HA) composite (80:20) beads for the sustained release of epidermal growth factor (EGF) delivery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!