Obscurins are a family of giant cytoskeletal proteins, originally identified in striated muscles where they have structural and regulatory roles. We recently showed that obscurins are abundantly expressed in normal breast epithelial cells where they play tumor and metastasis suppressing roles, but are nearly lost from advanced stage breast cancer biopsies. Consistent with this, loss of giant obscurins from breast epithelial cells results in enhanced survival and growth, epithelial to mesenchymal transition (EMT), and increased cell migration and invasion in vitro and in vivo. In the current study, we demonstrate that loss of giant obscurins from breast epithelial cells is associated with significantly increased phosphorylation and subsequent activation of the PI3K signaling cascade, including activation of AKT, a key regulator of tumorigenesis and metastasis. Pharmacological and molecular inhibition of the PI3K pathway in obscurin-depleted breast epithelial cells results in reversal of EMT, (re)formation of cell-cell junctions, diminished mammosphere formation, and decreased cell migration and invasion. Co-immunoprecipitation, pull-down, and surface plasmon resonance assays revealed that obscurins are in a complex with the PI3K/p85 regulatory subunit, and that their association is direct and mediated by the obscurin-PH domain and the PI3K/p85-SH3 domain with a KD of ~50 nM. We therefore postulate that giant obscurins act upstream of the PI3K cascade in normal breast epithelial cells, regulating its activation through binding to the PI3K/p85 regulatory subunit.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5216731PMC
http://dx.doi.org/10.18632/oncotarget.9985DOI Listing

Publication Analysis

Top Keywords

breast epithelial
24
epithelial cells
24
giant obscurins
16
pi3k/p85 regulatory
12
regulatory subunit
12
pi3k cascade
8
binding pi3k/p85
8
normal breast
8
loss giant
8
obscurins breast
8

Similar Publications

Background: Bone marrow mesenchymal stem cells (BMSCs) are a crucial component of the tumor microenvironment (TME), with hypoxic conditions promoting their migration to tumors. Exosomes play a vital role in cell-to-cell communication within the TME. Hypoxic TME have a great impact on the release, uptake and biofunctions of exosomes.

View Article and Find Full Text PDF

OTUD6B regulates KIFC1-dependent centrosome clustering and breast cancer cell survival.

EMBO Rep

January 2025

Cellular and Molecular Physiology, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 3BX, UK.

Cancer cells often display centrosome amplification, requiring the kinesin KIFC1/HSET for centrosome clustering to prevent multipolar spindles and cell death. In parallel siRNA screens of deubiquitinase enzymes, we identify OTUD6B as a positive regulator of KIFC1 expression that is required for centrosome clustering in triple-negative breast cancer (TNBC) cells. OTUD6B can localise to centrosomes and the mitotic spindle and interacts with KIFC1.

View Article and Find Full Text PDF

Signature of collagen alpha-1(x) gene expression in human cancers and their therapeutic implications.

Pathol Res Pract

January 2025

Department of Electric and Electronic Engineering, Dr. M.G.R Educational and Research Institute, Deemed to Be University, Chennai, Tamil Nadu 600 095, India.

Cancers are a class of disorders that entail uncontrollably unwanted cell development with dissemination. One in six fatalities globally is attributed to cancer, a global health issue. The analysis of the entire DNA sequence and how it expresses itself in tumor cells is known as cancer genomics.

View Article and Find Full Text PDF

Epithelial cell collectives migrate through tissue interfaces and crevices to orchestrate development processes, tumor invasion, and wound healing. Naturally, the traversal of cell collective through confining environments involves crowding due to narrowing spaces, which seems tenuous given the conventional inverse relationship between cell density and migration. However, the physical transitions required to overcome such epithelial densification for migration across confinements remain unclear.

View Article and Find Full Text PDF

Exploring vimentin's role in breast cancer via PICK1 alternative polyadenylation and the miR-615-3p-PICK1 interaction.

Biofactors

January 2025

Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai, People's Republic of China.

Breast cancer continues to be a major health issue for women worldwide, with vimentin (VIM) identified as a crucial factor in its progression due to its role in cell migration and the epithelial-to-mesenchymal transition (EMT). This study focuses on elucidating VIM's regulatory mechanisms on the miR-615-3p/PICK1 axis. Utilizing the 4T1 breast cancer cell model, we first used RNA-seq and proteomics to investigate the changes in the APA of PICK1 following VIM knockout (KO).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!