Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hexavalent chromium [Cr(VI)] is a well-known human carcinogen associated with an increased risk of lung cancer. However, the mechanisms underlying Cr(VI)-induced carcinogenesis remain unclear. MicroRNA-21 (miR-21) is a key regulator of oncogenic processes. Studies have shown that miR-21 exerts its oncogenic activity by targeting the tumor suppressor gene programmed cell death 4 (PDCD4). The present study examined the role of miR-21-PDCD4 signaling in Cr(VI)-induced cell transformation and tumorigenesis. Results showed that Cr(VI) induces ROS generation in human bronchial epithelial (BEAS-2B) cells. Chronic exposure to Cr(VI) is able to cause malignant transformation in BEAS-2B cells. Cr(VI) caused a significant increase of miR-21 expression associated with an inhibition of PDCD4 expression. Notably, STAT3 transcriptional activation by IL-6 is crucial for the Cr(VI)-induced miR-21 elevation. Stable knockdown of miR-21 or overexpression of PDCD4 in BEAS-2B cells significantly reduced the Cr(VI)-induced cell transformation. Furthermore, the Cr(VI) induced inhibition of PDCD4 suppressed downstream E-cadherin protein expression, but promoted β-catenin/TCF-dependent transcription of uPAR and c-Myc. We also found an increased miR-21 level and decreased PDCD4 expression in xenograft tumors generated with chronic Cr(VI)-exposed BEAS-2B cells. In addition, stable knockdown of miR-21 and overexpression of PDCD4 reduced the tumorogenicity of chronic Cr(VI)-exposed BEAS-2B cells in nude mice. Taken together, these results demonstrate that the miR-21-PDCD4 signaling axis plays an important role in Cr(VI)-induced carcinogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5239469 | PMC |
http://dx.doi.org/10.18632/oncotarget.9967 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!