AI Article Synopsis

  • Cuff electrode recording is being explored to enhance feedback signals for effective closed-loop functional neuromuscular stimulation systems.
  • The study introduces a method for estimating ankle angle using a multichannel cuff electrode, reducing the number of electrodes needed.
  • Experiments with a rabbit's sciatic nerve show that this method accurately estimates ankle angle, making it suitable for controlling limb motion in closed-loop FNS systems.

Article Abstract

Cuff electrode recording has been proposed as a solution to obtain robust feedback signals for closed-loop controlled functional neuromuscular stimulation (FNS) systems. However, single-channel cuff electrode recording requires several electrodes to obtain the feedback signal related to each muscle. In this study, we propose an ankle-angle estimation method in which recording is conducted from the proximal nerve trunk with a multichannel cuff electrode to minimize cuff electrode usage. In experiments, muscle afferent signals were recorded from a rabbit's proximal sciatic nerve trunk using a multichannel cuff electrode, and blind source separation and ankle-angle estimation were performed using fast independent component analysis (PP/FastICA) combined with dynamically driven recurrent neural network (DDRNN). The experimental results indicate that the proposed method has high ankle-angle estimation accuracy for both situations when the ankle motion is generated by position servo system or neuromuscular stimulation. Furthermore, the results confirm that the proposed method is applicable to closed-loop FNS systems to control limb motion.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2016.2580705DOI Listing

Publication Analysis

Top Keywords

cuff electrode
20
ankle-angle estimation
16
neuromuscular stimulation
12
blind source
8
sciatic nerve
8
functional neuromuscular
8
electrode recording
8
fns systems
8
nerve trunk
8
trunk multichannel
8

Similar Publications

Pocket hematoma is a common and serious complication following cardiac implantable electronic device (CIED) implantation, contributing to significant morbidity and mortality. This study aimed to evaluate the efficacy of a novel pocket compression device in reducing pocket hematoma occurrence. We enrolled 242 patients undergoing CIED implantation, randomly assigning them to receive either the novel compression vest with a pressure cuff or conventional sandbag compression.

View Article and Find Full Text PDF

Introduction: Moderate-to-severe obstructive sleep apnea (OSA) affects a large segment of the US population and is characterized by repetitive and reversible obstruction of the upper airway during sleep. Untreated OSA is associated with increased incidence of heart attack, stroke, and motor vehicle accidents due to sleepiness. Continuous positive airway pressure is often prescribed, but most patients with OSA are nonadherent.

View Article and Find Full Text PDF

: Previous studies have shown that neuromuscular electrical stimulation (NMES), while expensive, can provide some of the health benefits of exercise to people who cannot exercise their legs normally. The aim of this study was to quantify the increases in muscle metabolism in four muscles of the legs of able-bodied individuals with NMES. : Healthy college-aged students were tested.

View Article and Find Full Text PDF

Introduction: Dynamic modulation of grip occurs mainly within the major structures of the brain stem, in parallel with cortical control. This basic, but fundamental level of the brain, is robust to ill-formed feedback and to be useful, it may not require all the perceptual information of feedback we are consciously aware. This makes it viable candidate for using peripheral nerve stimulation (PNS), a form of tactile feedback that conveys intensity and location information of touch well but does not currently reproduce other qualities of natural touch.

View Article and Find Full Text PDF

Vagus nerve stimulation (VNS) is a therapeutic intervention previously shown to enhance fear extinction in rats. VNS is approved for use in humans for the treatment of epilepsy, depression, and stroke, and it is currently under investigation as an adjuvant to exposure therapy in the treatment of PTSD. However, the mechanisms by which VNS enhances extinction of conditioned fear remain unresolved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!