(212)Pb as tracer for PM deposition on urban vegetation.

Sci Total Environ

Italian National Research Council (CNR) - Institute of Environmental Geology and Geoengineering (IGAG), Environmental Isotope Geochemistry Laboratory, Via Salaria Km 29.300 - 00010 Montelibretti, Rome, Italy.

Published: November 2016

(212)Pb concentration in outdoor air is closely correlated with fine suspended particulate matter in the atmosphere. Thanks to this association, this isotope can be used to trace the sinking processes of particulate matter due to the vegetation, also providing accurate estimations of the deposition velocity on foliar surfaces. This approach is particularly effective in areas with high thoron fluxes and, consequently, high (212)Pb fluxes from soil. The contribution of vegetation to the improvement of air quality (AQImp) in the municipality area (MA) of Rome (Latium, Italy), almost entirely located on Th-enriched volcanic soils, was estimated by studying (212)Pb deposition velocity on the grasses (0.9-2.5mm·s(-1)) and on the most common tree classes, namely conifers (1.5-15mm·s(-1)), evergreen (1-4mm·s(-1)) and deciduous (0.2-1.5mm·s(-1)). (212)Pb activity in outdoor air was determined by gamma spectrometry after air pumping with accumulation on cellulose filters and after collection on artificial electrostatically charged surfaces (ECS). The high (212)Pb activity values obtained from this analysis (0.90±0.6Bqm(-3) and 0.58±0.15Bqm(-3), respectively near and far from the soil) are consistent both with the average regional thoron flux from volcanic soils (2.9·10(4)Bqm(-2)·h(-1)) and with the thoron flux measured in the volcanic soils of the study area. Thoron and (212)Pb fluxes were also measured both in laboratory and in the field under different soil moisture conditions. The total AQImp for the period from September 2014 to September 2015, calculated after the classification of the MA of Rome into six classes of vegetation, provided a value of 0.20 corresponding to 2.3 Tons per day of removed PM10. The role of grasslands in the PM10 removal, the contribution of the vegetation to the improvement of AQImp and the possibility of improving the sinking efficiency of green areas by increasing conifer trees coverage were also highlighted.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2016.06.051DOI Listing

Publication Analysis

Top Keywords

volcanic soils
12
outdoor air
8
particulate matter
8
deposition velocity
8
high 212pb
8
212pb fluxes
8
contribution vegetation
8
vegetation improvement
8
212pb activity
8
thoron flux
8

Similar Publications

Atmospheric nitrogen oxides (NO), hydrogen sulphide (HS) and carbon monoxide (CO): Boon or Bane for plant metabolism and development?

Environ Pollut

January 2025

Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Delhi, Delhi 110007, India. Electronic address:

Urban air pollution has been a global challenge world-wide. While urban vegetation or forest modelling can be useful in reducing the toxicities of the atmospheric gases by their absorption, the surge in gaseous pollutants negatively affects plant growth, thereby altering photosynthetic efficiency and harvest index. The present review analyses our current understanding of the toxic and beneficial effects of atmospheric nitrogen oxides (NO), hydrogen sulphide (HS) and carbon monoxide (CO) on plant growth and metabolism.

View Article and Find Full Text PDF

Soilscapes from Byers Peninsula, Maritime Antarctic: landform-lithology controls in soil formation.

An Acad Bras Cienc

January 2025

Universidade Federal de Viçosa - UFV, Departmento de Solos, Av. Peter Henry Rolfs, s/nº, Campus Universitário Viçosa, 36570-900 Viçosa, MG, Brazil.

The Byers Peninsula, the largest ice-free area in Maritime Antarctica, is vital for studying landscape-scale natural processes due to its diverse periglacial landforms. This study aim to characterize the soils and environments of its southern sector, focusing on soil-landform-lithology interactions. Thirty-seven soil profiles were classified, collected, and chemically and physically analyzed.

View Article and Find Full Text PDF

Transport mechanisms of the anthropogenic contaminant sulfamethoxazole in volcanic ash soils at equilibrium pH evaluated using the HYDRUS-1D model.

J Hazard Mater

January 2025

Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820436, Chile; Instituto para el Desarrollo Sustentable, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820436, Chile; Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Santiago, Chile. Electronic address:

The volcanic soils in Chile, where a significant portion of agricultural activities take place, are impacted by the presence of veterinary drugs, including sulfamethoxazole (SMX). The study examines how different soil types influence the movement and retention of sulfamethoxazole (SMX) across four regions of Chile, focusing on conditions at a neutral pH of 7.0.

View Article and Find Full Text PDF

This study investigates the geochemical characteristics of rare earth elements (REEs) in highland karstic bauxite deposits located in the Sierra de Bahoruco, Pedernales Province, Dominican Republic. These deposits, formed through intense weathering of volcanic material, represent a potentially valuable REE resource for the nation. Surface and subsurface soil samples were analyzed using portable X-ray fluorescence (pXRF) and a NixPro 2 color sensor validated with inductively coupled plasma optical emission spectrometry (ICP-OES).

View Article and Find Full Text PDF

Soil and Site Productivity Effects on Above- and Belowground Radiata Pine Carbon Pools at Harvesting Age.

Plants (Basel)

December 2024

Centro Nacional de Excelencia para la Industria de la Madera (CENAMAD)-ANID BASAL FB210015, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile.

D. Don is the most widely planted forest species in Chile, making it crucial to understand carbon pools in adult plantations. This study aimed to evaluate the effect of soil type and site productivity on the total carbon stock in adult radiata pine plantations, considering sites with contrasting water and nutrient availability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!