Most of the known regulatory mechanisms that curb inflammatory gene expression target pre-transcription-initiation steps, and evidence for post-initiation regulation of inflammatory gene expression remains scarce. We found that the transcriptional repressor Hes1 suppressed production of CXCL1, a chemokine that is crucial for recruiting neutrophils. Hes1 negatively regulated neutrophil recruitment in vivo in a manner that was dependent on macrophage-produced CXCL1, and it attenuated the severity of inflammatory arthritis. Mechanistically, inhibition of Cxcl1 expression by Hes1 did not involve modification of transcription initiation. Instead, Hes1 inhibited signal-induced recruitment of the positive transcription-elongation complex P-TEFb and thereby prevented phosphorylation of RNA polymerase II at Ser2 and productive elongation. Thus, our results identify Hes1 as a homeostatic suppressor of inflammatory responses that exerts its suppressive function by regulating transcription elongation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4955730 | PMC |
http://dx.doi.org/10.1038/ni.3486 | DOI Listing |
Int J Mol Sci
December 2024
Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 61-866 Poznan, Poland.
Malignant tumors are a leading cause of death worldwide, second only to cardiovascular disease. They occur in every population and have a high risk of mortality. The etiopathogenesis of malignant tumors is diverse and there are still many unknowns, leading to huge diagnostic and therapeutic challenges.
View Article and Find Full Text PDFGenes (Basel)
December 2024
National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China.
Background/objectives: Chromatin accessibility is closely associated with transcriptional regulation during maize () leaf development. However, its precise role in controlling gene expression at different developmental stages remains poorly understood. This study aimed to investigate the dynamics of chromatin accessibility and its influence on genome-wide gene expression during the BBCH_11, BBCH_13, and BBCH_17 stages of maize leaf development.
View Article and Find Full Text PDFFront Microbiol
December 2024
Scientific Research Institute of Systems Biology and Medicine, Moscow, Russia.
Introduction: WhiA is a conserved protein found in numerous bacteria. It consists of an HTH DNA-binding domain linked with a homing endonuclease (HEN) domain. WhiA is one of the most conserved transcription factors in reduced bacteria of the class Mollicutes.
View Article and Find Full Text PDFTranscription repressor BACH2 redirects short-lived terminally differentiated effector into long-lived memory cells. We postulate that BACH2-mediated long-lived memory programs promote HIV-1 persistence in gut CD4+ T cells. We coupled single-cell DOGMA-seq and TREK-seq to capture chromatin accessibility, transcriptome, surface proteins, T cell receptor, HIV-1 DNA and HIV-1 RNA in 100,744 gut T cells from ten aviremic HIV-1+ individuals and five HIV-1- donors.
View Article and Find Full Text PDFProgesterone receptors (PR) can regulate transcription by RNA Polymerase III (Pol III), which transcribes small non-coding RNAs, including all transfer RNAs (tRNAs). We have previously demonstrated that PR is associated with the Pol III complex at tRNA genes and that progestins downregulate tRNA transcripts in breast tumor models. To further elucidate the mechanism of PR-mediated regulation of Pol III, we studied the interplay between PR, the Pol III repressor Maf1, and TFIIIB, a core transcription component.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!