Underwater Wireless Sensor Network (UWSN) communication at high frequencies is extremely challenging. The intricacies presented by the underwater environment are far more compared to the terrestrial environment. The prime reason for such intricacies are the physical characteristics of the underwater environment that have a big impact on electromagnetic (EM) signals. Acoustics signals are by far the most preferred choice for underwater wireless communication. Because high frequency signals have the luxury of large bandwidth (BW) at shorter distances, high frequency EM signals cannot penetrate and propagate deep in underwater environments. The EM properties of water tend to resist their propagation and cause severe attenuation. Accordingly, there are two questions that need to be addressed for underwater environment, first what happens when high frequency EM signals operating at 2.4 GHz are used for communication, and second which factors affect the most to high frequency EM signals. To answer these questions, we present real-time experiments conducted at 2.4 GHz in terrestrial and underwater (fresh water) environments. The obtained results helped in studying the physical characteristics (i.e., EM properties, propagation and absorption loss) of underwater environments. It is observed that high frequency EM signals can propagate in fresh water at a shallow depth only and can be considered for a specific class of applications such as water sports. Furthermore, path loss, velocity of propagation, absorption loss and the rate of signal loss in different underwater environments are also calculated and presented in order to understand why EM signals cannot propagate in sea water and oceanic water environments. An optimal solk6ution for underwater communication in terms of coverage distance, bandwidth and nature of communication is presented, along with possible underwater applications of UWSNs at 2.4 GHz.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4934316 | PMC |
http://dx.doi.org/10.3390/s16060890 | DOI Listing |
Arch Sex Behav
January 2025
Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz (INI-Fiocruz), Rio de Janeiro, Brazil.
Perceived risk for HIV acquisition among gay, bisexual, and other men who have sex with men (GBMSM) may not align with their actual sexual HIV exposure. Factors associated with low/moderate perceived risk among GBMSM eligible for pre-exposure prophylaxis (PrEP) (based on their high estimated HIV exposure) have been poorly described in Latin America. This is a secondary analysis of a 2018 web-based cross-sectional survey in Brazil, Mexico, and Peru.
View Article and Find Full Text PDFNat Mater
January 2025
Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA.
Spin waves, or magnons, are essential for next-generation energy-efficient spintronics and magnonics. Yet, visualizing spin-wave dynamics at nanoscale and microwave frequencies remains a formidable challenge due to the lack of spin-sensitive, time-resolved microscopy. Here we report a breakthrough in imaging dipole-exchange spin waves in a ferromagnetic film owing to the development of laser-free ultrafast Lorentz electron microscopy, which is equipped with a microwave-mediated electron pulser for high spatiotemporal resolution.
View Article and Find Full Text PDFEur J Trauma Emerg Surg
January 2025
Department of Trauma Surgery and Orthopedics, Goethe University, University Hospital, Frankfurt, Germany.
Objective: Global per capita alcohol consumption is increasing, posing significant socioeconomic and medical challenges also due to alcohol-related traumatic injuries but also its biological effects. Trauma as a leading cause of death in young adults, is often associated with an increased risk of complications, such as sepsis and multiple organ failure, due to immunological imbalances. Regulatory T cells play a crucial role in maintaining immune homeostasis by regulating the inflammatory response.
View Article and Find Full Text PDFAesthetic Plast Surg
January 2025
Department of Plastic and Reconstructive Surgery, Rambam Health Care Campus, 8thHa'Aliya Hashniya st, Haifa, Israel.
Background: Medical tourism is a rapidly expanding multi-billion-dollar industry. Reduced costs, all-inclusive vacation packages that include cosmetic surgery, globalization, and affordable flight expenses have encouraged patients to seek aesthetic procedures in different countries. Cosmetic medical tourism is associated with high complication rates, such as severe infections, wound dehiscence, pain or discomfort, aesthetic dissatisfaction, and even death.
View Article and Find Full Text PDFNPJ Digit Med
January 2025
Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.
Chatbot-based multimodal AI holds promise for collecting medical histories and diagnosing ophthalmic diseases using textual and imaging data. This study developed and evaluated the ChatGPT-powered Intelligent Ophthalmic Multimodal Interactive Diagnostic System (IOMIDS) to enable patient self-diagnosis and self-triage. IOMIDS included a text model and three multimodal models (text + slit-lamp, text + smartphone, text + slit-lamp + smartphone).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!