Objective: The aim of this study was to evaluate the mechanical properties of dental resins and dental nanocomposites by means of 3-point bending, 4-point bending and piston-on-three ball biaxial static tests and also to investigate their dynamic mechanical properties. The obtained results from the static 3-point bending test also were compared with the corresponding mode in DMTA.

Methods: The hydrophilic surface of the inorganic OX-50 particles was treated with γ-MPS and the resulting silanized OX-50 was characterized using FTIR and TGA. The test specimens with a specified shape and dimensions for each type of flexural static and dynamic tests were prepared for Bis-GMA/TEGDMA (70/30wt%/wt%) and the corresponding nanocomposite containing 50wt% of silanized OX-50. The specimens were stored in distilled water at 37°C for 24h prior to the mechanical tests and then they were subjected to different types of static mode and also to dynamic mode of flexural test. The effect of test speed, type of the test and the presence of silanized nano-particles were investigated for specimens under static flexural tests. The results were then statistically analyzed and compared using one-way ANOVA and the Tukey's post hoc test (significance level=0.05). Fractured surfaces were observed by means of scanning electron microscopy. Finite element analyses were also performed to compare the static tests. On the other hand, the effect of frequency, temperature and the presence of silanized nano particles on the viscoelastic properties were investigated for dynamic mechanical tests.

Results: The grafting of γ-MPS onto the OX-50 nano particles was confirmed. The results of 3-point bending and 4-point bending uniaxial and biaxial flexural tests of resin and composite showed the highest strength values for biaxial test specimens and the lowest strength value for 4-point bending specimens in accordance with finite element analysis results. Also, an increasing trend was observed for flexural strength of all resin samples with increasing the test speed up a critical speed which decreased beyond it. The nanocomposite specimens showed higher modulus and lower tanδ than the unfilled resin. The storage modulus measured in the dynamic tests approached the static elastic modulus values with decreasing the frequency.

Significance: Different static and dynamic test methods are used to evaluate the mechanical properties of dental resins and composites. This study provides an insight into the tests and presents more details on the effect of test conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dental.2016.06.001DOI Listing

Publication Analysis

Top Keywords

mechanical properties
16
dental resins
12
dynamic mechanical
12
3-point bending
12
4-point bending
12
test
10
static
9
evaluate mechanical
8
properties dental
8
bending 4-point
8

Similar Publications

Precise Synthesis of Complex Si-Si Molecular Frameworks.

J Am Chem Soc

January 2025

Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States.

In this Perspective, we highlight the emergence of target-oriented syntheses of complex molecules composed of Si-Si (oligosilanes) rather than C-C bonds. Saturated oligosilanes structurally resemble alkanes with respect to a tetrahedral geometry, a preference for a staggered conformation in linear chains, the ability to form stable small rings, and tetrahedral stereochemistry at asymmetrically functionalized Si centers. There are also critical differences, for example, differences in multiple bonding and the ability to form penta- and hexacoordinated structures, that mean that chemical reactivity and, in particular, rules for stereoselective synthesis do not cleanly translate from carbon to silicon.

View Article and Find Full Text PDF

Mechanical and thermal responsive chiral photonic cellulose hydrogels for dynamic anti-counterfeiting and optical skin.

Mater Horiz

January 2025

Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China.

Dynamic responsive structural colored materials have drawn increased consideration in a wide range of applications, such as colorimetric sensors and high-safety tags. However, the sophisticated interactions among the individual responsive parts restrict the advanced design of multimodal responsive photonic materials. Inspired by stimuli-responsive color change in chameleon skin, a simple and effective photo-crosslinking strategy is proposed to construct hydroxypropyl cellulose (HPC) based hydrogels with multiple responsive structured colors.

View Article and Find Full Text PDF

The development of diverse microstructures has substantially contributed to recent progress in high-performance electromagnetic wave (EMW) absorption materials, providing a versatile platform for the modulation of absorption properties. Exploring multidimensional microstructures and developing tailored and gentle strategies for their precise optimization can substantially address the current challenges posed by relatively unclear underlying mechanisms. Here, a series of 2D/1D heterogeneous NiO@PPy composites featuring hollow hierarchical microstructures are successfully synthesized using a straightforward strategy combining sacrificial templating with chemical oxidative polymerization.

View Article and Find Full Text PDF

The spectrum of carbon monoxide is important for astrophysical media, such as planetary atmospheres, interstellar space, exoplanetary and stellar atmospheres; it also important in plasma physics, laser physics and combustion. Interpreting its spectral signature requires a deep and thorough understanding of its absorption and emission properties. A new accurate spectroscopic model for the ground and electronically-excited states of the CO molecule computed at the aug-cc-pV5Z CASSCF/MRCI+Q level is reported.

View Article and Find Full Text PDF

Oxygen, light, and mechanical force mediated radical polymerization toward precision polymer synthesis.

Chem Commun (Camb)

January 2025

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.

The synthesis of polymers with well-defined composition, architecture, and functionality has long been a focal area of research in the field of polymer chemistry. The advancement of controlled radical polymerization (CRP) has facilitated the synthesis of precise polymers, which are endowed with new properties and functionalities, thereby exhibiting a wide range of applications. However, radical polymerization faces several challenges, such as oxygen intolerance, and common thermal initiation methods may lead to side reactions and depolymerization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!