The study presented here focuses on commercial antibacterial tiles whose emissivity of (nano) particles due to abrasion has yet barely been investigated. The tiles have been characterized regarding their surface properties and composition throughout their chain-of-use, i.e. from their state of commercialization until the experimental end-of-service life. In contrast to plane standard tiles, their surfaces form hilly surfaces. In the depressions, titanium dioxide is found at the surface, thus theoretically protected by the hilly areas against abrasion on the tile's surface. Furthermore, a deposition technique has been put in place by producers allowing for coating the before mentioned commercial tiles with titanium dioxide, thus being similar to those commercially available. It consists in depositing titanium dioxide on the surface, latter one allowing fixing the first. This development allows for better understanding the future options for product formulation and thus improvement with respect to particle release. The tests reveal the aerosolization from commercial antibacterial tiles of micronic and submicronic particles in the inhalable region or particles that can subjected to be released in the environment (<10μm). The aersolization of the particles from the coated tiles was found to be significantly higher compared to the non coated tiles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2016.05.039 | DOI Listing |
J Hazard Mater
January 2025
Environment Research Institute, Shandong University, Qingdao 266237, China. Electronic address:
Carbon quantum dots (CQDs) are emerging as a promising zero-dimensional carbon nanomaterial with the potential to enhance the catalytic properties of titanium dioxide nanoparticles (TiO NPs). Although CQDs modification alters the physicochemical properties of TiO NPs, the impact on their toxicity has been rarely explored. In this study, we investigated the effects of CQDs doping on the toxicity, bioaccumulation, and trophic transfer of TiO NPs using a representative aquatic food chain comprising phytoplankton (Scenedesmus obliquus), zooplankton (Daphnia magna), and fish (Danio rerio).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Water Science and Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
This study investigated the antimicrobial efficacy of graphene, titanium dioxide nanoparticles (TiO2NPs), and calcium oxide nanoparticles (CaONPs) against various microorganisms in dairy wastewater. The minimum inhibitory concentration (MIC) of graphene was determined to be 41.66 mg/L for Escherichia coli and 33.
View Article and Find Full Text PDFBurns Trauma
January 2025
Research Group of Immune Cell Communication, Department of Immune Medicine, Universitätsklinikum Regensburg | UKR, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
Effective wound management and treatment are crucial in clinical practice, yet existing strategies often fall short in fully addressing the complexities of skin wound healing. Recent advancements in tissue engineering have introduced innovative approaches, particularly through the use of nanobiomaterials, to enhance the healing process. In this context, titanium dioxide nanoparticles (TiO NPs) have garnered attention due to their excellent biological properties, including antioxidant, anti-inflammatory, and antimicrobial properties.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Chemistry, University of Bath, Claverton Down, Bath, England BA2 7AY, U.K.
Colloids Surf B Biointerfaces
December 2024
Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
The separation of oil from microalgae aqueous emulsions is a critical step in producing algal-derived biofuels and nutraceuticals. This study presents the development of super hydrophilic and super oleophobic composite membranes to efficiently separate algal oil from oil/water emulsions. Carbon nanotubes (CNTs) were functionalized with polydopamine (PDA), polyethylene glycol (PEG), and titanium dioxide (TiO) nanoparticles and coated onto a mixed cellulose ester (MCE) substrate to fabricate the composite membranes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!