Recombinant human erythropoietin (rhEPO) is used in breast and ovarian cancer patients to alleviate cancer- and chemotherapy-related anemia. Some clinical trials have reported that rhEPO may adversely impact survival and increase the risk of thrombovascular events in patients with breast cancer but not with ovarian cancer. The latter may potentially benefit the most from rhEPO treatment due to the nephrotoxic and myelosuppresive effects of standard platinum-based chemotherapy used in ovarian cancer disease. However, over the last decade the preclinical data have revealed that EPO is not only the principal growth factor and the hormone which regulates erythropoiesis, but also a cytokine with a pleiotropic activity which also can affect cancer cells. EPO can stimulate survival, ability to form metastases and drug resistance not only in continuous breast- and ovarian cancer cell lines but also in breast cancer stem-like cells. EPO receptor (EPOR) can also be constitutively active in both these cancers and, in breast cancer cells, may act in an interaction with estrogen receptor (ER) and epidermal growth factor receptor-2 (HER-2). EPOR, by an EPO-independent mechanism, promotes proliferation of breast cancer cells in cooperation with estrogen receptor, resulting in decreased effectiveness of tamoxifen treatment. In another interaction, as a result of the molecular antagonism between EPOR and HER2, rhEPO protects breast cancer cells against trastuzumab. Both clinical and preclinical evidence strongly suggest the urgent need to reevaluate the traditional use of rhEPO in the oncology setting.

Download full-text PDF

Source
http://dx.doi.org/10.17772/gp/57817DOI Listing

Publication Analysis

Top Keywords

breast cancer
20
ovarian cancer
16
cancer cells
16
cancer
10
drug resistance
8
breast ovarian
8
growth factor
8
cells epo
8
estrogen receptor
8
breast
7

Similar Publications

Triple-negative breast cancer (TNBC) remains a significant global health challenge, emphasizing the need for precise identification of patients with specific therapeutic targets and those at high risk of metastasis. This study aimed to identify novel therapeutic targets for personalized treatment of TNBC patients by elucidating their roles in cell cycle regulation. Using weighted gene co-expression network analysis (WGCNA), we identified 83 hub genes by integrating gene expression profiles with clinical pathological grades.

View Article and Find Full Text PDF

Background: Breast cancer screening (BCS) inequities are evident at national and local levels, and many health systems want to address these inequities, but may lack data about contributing factors. The objective of this study was to inform health system interventions through an exploratory analysis of potential multilevel contributors to BCS inequities using health system data.

Methods: The authors conducted a cross-sectional analysis within a large academic health system including 19,774 individuals who identified as Black (n = 1445) or White (n = 18,329) race and were eligible for BCS.

View Article and Find Full Text PDF

Background: To date, 11 DNA polymerase epsilon (POLE) pathogenic variants have been declared "hotspot" mutations. Patients with endometrial cancer (EC) characterized by POLE hotspot mutations (POLEmut) have exceptional survival outcomes. Whereas international guidelines encourage deescalation of adjuvant treatment in early-stage POLEmut EC, data regarding safety in POLEmut patients with unfavorable characteristics are still under investigation.

View Article and Find Full Text PDF

Multi-gene panel testing allows efficient detection of pathogenic variants in cancer susceptibility genes including moderate-risk genes such as ATM and PALB2. A growing number of studies examine the risk of breast cancer (BC) conferred by pathogenic variants of these genes. A meta-analysis combining the reported risk estimates can provide an overall estimate of age-specific risk of developing BC, that is, penetrance for a gene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!