Mechanisms for passively coordinating forelimb movements and flight feather abduction and adduction have been described separately from both in vivo and ex vivo studies. Skeletal coordination has been identified as a way for birds to simplify the neuromotor task of controlling flight stroke, but an understanding of the relationship between skeletal coordination and the coordination of the aerodynamic control surface (the flight feathers) has been slow to materialize. This break between the biomechanical and aerodynamic approaches - between skeletal kinematics and airfoil shape - has hindered the study of dynamic flight behaviors. Here I use dissection and histology to identify previously overlooked interconnections between musculoskeletal elements and flight feathers. Many of these structures are well-placed to directly link elements of the passive musculoskeletal coordination system with flight feather movements. Small bundles of smooth muscle form prominent connections between upper forearm coverts (deck feathers) and the ulna, as well as the majority of interconnections between major flight feathers of the hand. Abundant smooth muscle may play a role in efficient maintenance of folded wing posture, and may also provide an autonomically regulated means of tuning wing shape and aeroelastic behavior in flight. The pattern of muscular and ligamentous linkages of flight feathers to underlying muscle and bone may provide predictable passive guidance for the shape of the airfoil during flight stroke. The structures described here provide an anatomical touchstone for in vivo experimental tests of wing surface coordination in an extensively researched avian model species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5055087 | PMC |
http://dx.doi.org/10.1111/joa.12511 | DOI Listing |
Sci Rep
December 2024
Negaunee Integrative Research Center, Field Museum, 1400 S. Dusable Lake Shore Drive, Chicago, IL, 60605, USA.
Enantiornithes are the most successful early-diverging avian clade, their fossils revealing important information regarding the structure of Cretaceous avifaunas and the parallel refinement of flight alongside the ornithuromorph lineage that includes modern birds. The most diverse recognized family of Early Cretaceous enantiornithines is the Bohaiornithidae, known from the Jehol Biota in northeastern China. Members of this clade enhance our understanding of intraclade morphological diversity and elucidate the independent evolution of this unique lineage.
View Article and Find Full Text PDFJ Exp Biol
January 2025
Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA.
Bioinspir Biomim
December 2024
Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea.
We improve the aerodynamic performance of a simplified vertical-axis wind turbine (VAWT) using a biomimetic flap, inspired by the movement of secondary feathers of a bird's wing at landing (Liebe 197954). The VAWT considered has three NACA0018 straight blades at the Reynolds number of80000based on the turbine diameter and free-stream velocity. The biomimetic flap is made of a rigid rectangular curved plate, and its streamwise length is 0.
View Article and Find Full Text PDFSci Robot
November 2024
School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland.
Proc Natl Acad Sci U S A
November 2024
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544.
Multiple rows of feathers, known as the covert feathers, contour the upper and lower surfaces of bird wings. These feathers have been observed to deploy passively during high angle of attack maneuvers and are suggested to play an aerodynamic role. However, there have been limited attempts to capture their underlying flow physics or assess the function of multiple covert rows.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!