We present a solid-state NMR methodology capable of investigating the carbon skeleton of natural abundance organic powders. The methodology is based on the (13)C-(13)C dipolar coupling interaction and allows carbon-carbon connectivities to be unambiguously established for a wide range of organic solids. This methodology is particularly suitable for disordered solids, such as natural or synthetic macromolecules, which cannot be studied using conventional diffraction or NMR techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6cc04202cDOI Listing

Publication Analysis

Top Keywords

carbon-carbon connectivities
8
natural abundance
8
abundance organic
8
organic powders
8
determining carbon-carbon
4
connectivities natural
4
powders dipolar
4
dipolar couplings
4
couplings solid-state
4
solid-state nmr
4

Similar Publications

Serendipitous Discovery of Dearomatized Dimers in Anthracene Derivative Oxidation.

Org Lett

January 2025

Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States.

We present the serendipitous discovery of an unusual dimer formed from anthracene-derived polyarenes. Unlike the typical oxidative coupling of substituted aromatic scaffolds, the reaction yielded a dearomatized enone dimer as the sole product. This dearomatized motif, notably, does not undergo the commonly observed rearomatization, and no biaryl products were detected.

View Article and Find Full Text PDF

In the Czochralski single-crystal silicon manufacturing industry, single-crystal furnaces often experience corrosion from silicon vapor, which reduces their operational lifespan. However, the preparation of metal coatings on the surface of C/C composites is challenging due to their low coefficient of thermal expansion and the intricate structure of carbon fibers. To address this issue and achieve high-quality alloy coatings, Ni-Al and Ni-Al/Si composite coatings are successfully prepared on the surface of C/C composites through a combination of electroplating and hot-dip plating, and their oxidation behavior at elevated temperatures is thoroughly investigated.

View Article and Find Full Text PDF

Diarylethenes are a well-studied and optimized class of photoswitches with a wide range of applications, including data storage, smart materials, or photocontrolled catalysis and biological processes. Most recently, aza-diarylethenes have been developed in which carbon-carbon bond connections are replaced by carbon-nitrogen connections. This structural elaboration opens up an entire new structure and property space expanding the versatility and applicability of diarylethenes.

View Article and Find Full Text PDF

Confinement-Driven Dimethyl Ether Carbonylation in Mordenite Zeolite as an Ultramicroscopic Reactor.

Acc Chem Res

October 2024

Interdisciplinary Institute of NMR and Molecular Sciences, Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.

ConspectusThe conversion of C1 molecules to methyl acetate through the carbonylation of dimethyl ether in mordenite zeolite is an appealing reaction and a crucial step in the industrial coal-to-ethanol process. Mordenite zeolite has large 12-membered-ring (12MR) channels (7.0 × 6.

View Article and Find Full Text PDF

Salix matsudana fatty acid desaturases: Identification, classification, evolution, and expression profiles for development and stress tolerances.

Int J Biol Macromol

October 2024

Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China. Electronic address:

Fatty acid desaturases (FADs) are enzymes that transform carbon‑carbon single bonds into carbon‑carbon double bonds within acyl chains, resulting in the production of unsaturated FAs (UFAs). They are crucial for plant growth, development, and adaptation to environmental stress. In our research, we identified 40 FAD candidates in the Salix matsudana genome, grouping them into seven categories.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!